ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetric Tops Subject to Combined Electric Fields: Conditional Quasi-Solvability via the Quantum Hamilton-Jacobi Theory

60   0   0.0 ( 0 )
 نشر من قبل Burkhard Schmidt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We make use of the Quantum Hamilton-Jacobi (QHJ) theory to investigate conditional quasi-solvability of the quantum symmetric top subject to combined electric fields (symmetric top pendulum). We derive the conditions of quasi-solvability of the time-independent Schroedinger equation as well as the corresponding finite sets of exact analytic solutions. We do so for this prototypical trigonometric system as well as for its anti-isospectral hyperbolic counterpart. An examination of the algebraic and numerical spectra of these two systems reveals mutually closely related patterns. The QHJ approach allows to retrieve the closed-form solutions for the spherical and planar pendula and the Razavy system that had been obtained in our earlier work via Supersymmetric Quantum Mechanics as well as to find a cornucopia of additional exact analytic solutions.



قيم البحث

اقرأ أيضاً

245 - Danilo Bruno 2007
A new approach leading to the formulation of the Hamilton-Jacobi equation for field theories is investigated within the framework of jet-bundles and multi-symplectic manifolds. An algorithm associating classes of solutions to given sets of boundary c onditions of the field equations is provided. The paper also puts into evidence the intrinsic limits of the Hamilton-Jacobi method as an algorithm to determine families of solutions of the field equations, showing how the choice of the boundary data is often limited by compatibility conditions.
Electric resistance in conducting media is related to heat (or entropy) production in presence of electric fields. In this paper, by using Arakis relative entropy for states, we mathematically define and analyze the heat production of free fermions w ithin external potentials. More precisely, we investigate the heat production of the non-autonomous C*-dynamical system obtained from the fermionic second quantization of a discrete Schrodinger operator with bounded static potential in presence of an electric field that is time- and space-dependent. It is a first preliminary step towards a mathematical description of transport properties of fermions from thermal considerations. This program will be carried out in several papers. The regime of small and slowly varying in space electric fields is important in this context, and is studied the present paper. We use tree-decay bounds of the $n$-point, $nin 2mathbb{N}$, correlations of the many-fermion system to analyze this regime. We verify below the 1st law of thermodynamics for the system under consideration. The latter implies, for systems doing no work, that the heat produced by the electromagnetic field is exactly the increase of the internal energy resulting from the modification of the (infinite volume) state of the fermion system. The identification of heat production with an energy increment is, among other things, technically convenient. We initially focus our study on non-interacting (or free) fermions, but our approach will be later applied to weakly interacting fermions.
By using the Hamilton-Jacobi [HJ] framework the three dimensional Palatini theory plus a Chern-Simons term [PCS] is analyzed. We report the complete set of $HJ$ Hamiltonians and a generalized $HJ$ differential from which all symmetries of the theory are identified. Moreover, we show that in spite of PCS Lagrangian produces Einsteins equations, the generalized $HJ$ brackets depend on a Barbero-Immirzi like parameter. In addition we complete our study by performing a canonical covariant analysis, and we construct a closed and gauge invariant two form that encodes the symplectic geometry of the covariant phase space.
It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find a set of polynomial solutions of this quasi-exactly solvable version of the CHEq. These finite solutions encompass previously known polynomial solutions of the Generalized Spheroidal Equation, Razavy Eq., Whittaker-Hill Eq., etc. The analysis is applied to obtain and describe special eigen-functions of the quantum Hamiltonian of two fixed Coulombian centers in two and three dimensions.
172 - Danilo Bruno 2010
The paper is devoted to prove the existence of a local solution of the Hamilton-Jacobi equation in field theory, whence the general solution of the field equations can be obtained. The solution is adapted to the choice of the submanifold where the in itial data of the field equations are assigned. Finally, a technique to obtain the general solution of the field equations, starting from the given initial manifold, is deduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا