ﻻ يوجد ملخص باللغة العربية
We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton thick (CT) AGN ESO428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at the lower energies (<3 keV). The smaller extent of the hard continuum and Fe K{alpha} profiles imply that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ~10% than in the cone-direction. In the 0.3-1.5 keV band, the ratio of cross-cone to cone photons increases to ~84%, suggesting an additional soft diffuse emission component, disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component ~5 10^38 erg s^-1 is roughly consistent with the thermal component suggested by the spectral fits in the 170-900 pc annulus.
We have analyzed the deep Chandra observation (~155 ks) of the Compton Thick Active Galactic Nucleus (CT AGN) ESO 428-G014, to study in detail the morphology of the diffuse X-ray emission in the inner ~500 pc radius region. Comparing different X-ray
We report the results of high-resolution subpixel imaging of the hard continuum and Fe K{alpha} line of the Compton Thick (CT) Active Galactic Nucleus (AGN) ESO 428-G014, observed with Chandra ACIS. While the 3-4 keV emission is dominated by an exten
Recent observations of nearby Compton thick (CT) active galactic nuclei (AGNs) with Chandra have resolved hard (>3 keV) X-ray emission extending out from the central supermassive black hole to kiloparsec scales, challenging the long-held belief that
We present the spatial analysis of five Compton thick (CT) active galactic nuclei (AGNs), including MKN 573, NGC 1386, NGC 3393, NGC 5643, and NGC 7212, for which high resolution Chandra observations are available. For each source, we find hard X-ray
Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of $2times10^{-16}$ ergs s$^{-1}$ cm$^{-2}$. We present the search for the extended emission on spatial scales of