ﻻ يوجد ملخص باللغة العربية
Learning compact binary codes for image retrieval task using deep neural networks has attracted increasing attention recently. However, training deep hashing networks for the task is challenging due to the binary constraints on the hash codes, the similarity preserving property, and the requirement for a vast amount of labelled images. To the best of our knowledge, none of the existing methods has tackled all of these challenges completely in a unified framework. In this work, we propose a novel end-to-end deep learning approach for the task, in which the network is trained to produce binary codes directly from image pixels without the need of manual annotation. In particular, to deal with the non-smoothness of binary constraints, we propose a novel pairwise constrained loss function, which simultaneously encodes the distances between pairs of hash codes, and the binary quantization error. In order to train the network with the proposed loss function, we propose an efficient parameter learning algorithm. In addition, to provide similar / dissimilar training images to train the network, we exploit 3D models reconstructed from unlabelled images for automatic generation of enormous training image pairs. The extensive experiments on image retrieval benchmark datasets demonstrate the improvements of the proposed method over the state-of-the-art compact representation methods on the image retrieval problem.
Deep hashing methods have been shown to be the most efficient approximate nearest neighbor search techniques for large-scale image retrieval. However, existing deep hashing methods have a poor small-sample ranking performance for case-based medical i
Hashing technology has been widely used in image retrieval due to its computational and storage efficiency. Recently, deep unsupervised hashing methods have attracted increasing attention due to the high cost of human annotations in the real world an
Image hash algorithms generate compact binary representations that can be quickly matched by Hamming distance, thus become an efficient solution for large-scale image retrieval. This paper proposes RV-SSDH, a deep image hash algorithm that incorporat
With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of the
Retrieving content relevant images from a large-scale fine-grained dataset could suffer from intolerably slow query speed and highly redundant storage cost, due to high-dimensional real-valued embeddings which aim to distinguish subtle visual differe