ﻻ يوجد ملخص باللغة العربية
We numerically investigate the gravitational waves generated by the head-on collision of equal-mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness $mathcal{C}$. We show that there exist three different possible outcomes for such collisions: (1) an excited stable oscillaton for low $mathcal{C}$, (2) a merger and formation of a black-hole for intermediate $mathcal{C}$, and (3) a pre-merger collapse of both oscillatons into individual black-holes for large $mathcal{C}$. For (1), the excited, aspherical oscillaton continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted increases with compactness, and possesses a maximum which is greater than that from the merger of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the post-merger ring-down in this case are larger than that of corresponding mass black-holes -- potentially a key observable to distinguish black-hole mergers with their scalar mimics. For (3), the gravitational wave output is indistinguishable from a similar mass, black-hole--black-hole merger.
If a significant fraction of dark matter is in the form of compact objects, they will cause microlensing effects in the gravitational wave (GW) signals observable by LIGO and Virgo. From the non-observation of microlensing signatures in the binary bl
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determ
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ grav
We investigate the isotropic and anisotropic components of the Stochastic Gravitational Wave Background (SGWB) originated from unresolved merging compact binaries in galaxies. We base our analysis on an empirical approach to galactic astrophysics tha
The scalar tensor theory contains a coupling function connecting the quantities in the Jordan and Einstein frames, which is constrained to guarantee a transformation rule between frames. We simulate the supernovae core collapse with different choices