ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental investigation of dynamical structures formation due to flowing complex plasma past an obstacle

101   0   0.0 ( 0 )
 نشر من قبل Surabhi Jaiswal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the experimental observation of dynamical behavior of flowing complex plasma past a spherical obstacle. The experiment has been carried out in a $Pi$-shaped DC glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A stationary dust cloud is formed by maintaining the pumping speed and gas flow rate. A spherical obstacle vertically mounted on the cathode tray acts as an obstacle to the flow of dust particles. The controlled dust flow is generated by reducing the mass flow of the neutrals through a mass flow controller. The flowing dust particles are repelled by the electrostatic field of the negatively charged sphere and a microparticle free region (dust void) is formed surrounding the obstacle. The far particles are attracted towards the floating obstacle and reflected back when they have arrived at a minimum distance, causing a ring shaped structure around the obstacle. We characterize the shape of this structure over a range of dust flow speeds and obstacle biases. For a supersonic flow of dust fluid around a negatively biased obstacle, a bow shock is formed on the upstream side of the sphere, while the generation of wave structures is observed on the downstream side for a particular range of flow velocities. Reynolds numbers in this case is estimated as $R_e gtrsim 50$. This wave structure reminds of the beginning of the formation of a Von-Karman vortex street. A physical picture for the observed structure based on ion-drag, neutral streaming and electric forces is discussed.



قيم البحث

اقرأ أيضاً

Pinned solitons are a special class of nonlinear solutions created by a supersonically moving object in a fluid. They move with the same velocity as the moving object and thereby remain pinned to the object. A well known hydrodynamical phenomenon, th ey have been shown to exist in numerical simulation studies but to date have not been observed experimentally in a plasma. In this paper we report the first experimental excitation of pinned solitons in a dusty (complex) plasma flowing over a charged obstacle. The experiments are performed in a {Pi} shaped Dusty Plasma Experimental (DPEx) device in which a dusty plasma is created in the background of a DC glow discharge Ar plasma using micron sized kaolin dust particles. A biased copper wire creates a potential structure that acts as a stationary charged object over which the dust fluid is made to flow at a highly supersonic speed. Under appropriate conditions nonlinear stationary structures are observed in the laboratory frame that correspond to pinned structures moving with the speed of the obstacle in the frame of the moving fluid. A systematic study is made of the propagation characteristics of these solitons by carefully tuning the flow velocity of the dust fluid by changing the height of the potential structure. It is found that the nature of the pinned solitons changes from a single humped one to a multi-humped one and their amplitudes increase with an increase of the flow velocity of the dust fluid. The experimental findings are then qualitatively compared with the numerical solutions of a model forced Korteweg de Vries (fKdV) equation.
Heat transport in a three-dimensional complex (dusty) plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). An extended suspension of microparticles was l ocally heated by a shear flow created by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analysed and from these, using a fluid heat transport equation that takes viscous heating and neutral gas drag into account, the complex plasmas thermal diffusivity and kinematic viscosity were calculated. Their values are compared with previous results reported in ground-based experiments with complex plasmas.
We report on the observation of the self-excited dust density waves in the dc discharge complex plasma. The experiments were performed under microgravity conditions in the Plasmakristall-4 facility on board the International Space Station. In the exp eriment, the microparticle cloud was first trapped in an inductively coupled plasma, then released to drift for some seconds in a dc discharge with constant current. After that the discharge polarity was reversed. DC plasma containing a drifting microparticle cloud was found to be strongly non-uniform in terms of microparticle drift velocity and plasma emission in accord with [Zobnin et.al., Phys. Plasmas 25, 033702 (2018)]. In addition to that, non-uniformity in the self-excited wave pattern was observed: In the front edge of the microparticle cloud (defined as head), the waves had larger phase velocity than in the rear edge (defined as tail). Also, after the polarity reversal, the wave pattern exhibited several bifurcations: Between each of the two old wave crests, a new wave crest has formed. These bifurcations, however, occurred only in the head of the microparticle cloud. We show that spatial variations of electric field inside the drifting cloud play an important role in the formation of the wave pattern. Comparison of the theoretical estimations and measurements demonstrate the significant impact of the electric field on the phase velocity of the wave. The same theoretical approach applied to the instability growth rate, showed agreement between estimated and measured values.
225 - L. Worner , C. Rath , V. Nosenko 2012
The structure of driven three-dimensional complex plasma clusters was studied experimentally. The clusters consisted of around 60 hollow glass spheres with a diameter of 22 microns that were suspended in a plasma of rf discharge in argon. The particl es were confined in a glass box with conductive yet transparent coating on its four side walls, this allowed to manipulate the particle cluster by biasing the confining walls in a certain sequence. In this work, a rotating electric field was used to drive the clusters. Depending on the excitation frequency, the clusters rotated (10^4 - 10^7 times slower than the rotating field) or remained stationary. The cluster structure was neither that of nested spherical shells nor simple chain structure. Strings of various lengths were found consisting of 2 to 5 particles, their spatial and temporal correlations were studied. The results are compared to recent simulations.
The electrostatic shielding of a charged absorbing object (dust grain) in a flowing collisionless plasma is investigated by using the linearized kinetic equation for plasma ions with a point-sink term accounting for ion absorption on the object. The effect of absorption on the attractive part of the grain potential is investigated. For subthermal ion flows, the attractive part of the grain potential in the direction perpendicular to the ion flow can be significantly reduced or completely destroyed, depending on the absorption rate. For superthermal ion flows, however, the effect of absorption on the grain attraction in the direction perpendicular to the ion flow is shown to be exponentially weak. It is thus argued that, in the limit of superthermal ion flow, the effect of absorption on the grain shielding potential can be safely ignored for typical grain sizes relevant to complex plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا