ﻻ يوجد ملخص باللغة العربية
Since the first version of the Mu2e TDR released at the beginning of 2015, the Mu2e Calorimeter system has undergone a long list of changes to arrive to its final design. These changes were primarily caused by two reasons: (i) the technology choice between the TDR proposed solution of BaF2 crystals readout with solar blind Avalanche Photodiodes (APDs) and the backup option of CsI crystals readout with Silicon Photomultipliers (SiPM) has been completed and (ii) the channels numbering, the mechanical system and the readout electronics were substantially modified while proceeding with engineering towards the final project. This document updates the description of the calorimeter system adding the most recent engineering drawings and tecnical progresses.
The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current worlds best limits for this process.
This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being develope
Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current worlds best limits for this process. The experiments
In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati N
The Mu2e experiment at Fermilab searches for the charged-lepton flavour violating (CLFV) conversion of a negative muon into an electron in the field of an aluminum nucleus, with a distinctive signature of a mono-energetic electron of energy slightly