ترغب بنشر مسار تعليمي؟ اضغط هنا

Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at $t = infty$

88   0   0.0 ( 0 )
 نشر من قبل Daisuke Sagaki
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $lambda in P^{+}$ be a level-zero dominant integral weight, and $w$ an arbitrary coset representative of minimal length for the cosets in $W/W_{lambda}$, where $W_{lambda}$ is the stabilizer of $lambda$ in a finite Weyl group $W$. In this paper, we give a module $mathbb{K}_{w}(lambda)$ over the negative part of a quantum affine algebra whose graded character is identical to the specialization at $t = infty$ of the nonsymmetric Macdonald polynomial $E_{w lambda}(q,,t)$ multiplied by a certain explicit finite product of rational functions of $q$ of the form $(1 - q^{-r})^{-1}$ for a positive integer $r$. This module $mathbb{K}_{w}(lambda)$ (called a level-zero van der Kallen module) is defined to be the quotient module of the level-zero Demazure module $V_{w}^{-}(lambda)$ by the sum of the submodules $V_{z}^{-}(lambda)$ for all those coset representatives $z$ of minimal length for the cosets in $W/W_{lambda}$ such that $z > w$ in the Bruhat order $<$ on $W$.



قيم البحث

اقرأ أيضاً

130 - Kentaro Nagao 2007
We have two constructions of the level-$(0,1)$ irreducible representation of the quantum toroidal algebra of type $A$. One is due to Nakajima and Varagnolo-Vasserot. They constructed the representation on the direct sum of the equivariant K-groups of the quiver varieties of type $hat{A}$. The other is due to Saito-Takemura-Uglov and Varagnolo-Vasserot. They constructed the representation on the q-deformed Fock space introduced by Kashiwara-Miwa-Stern. In this paper we give an explicit isomorphism between these two constructions. For this purpose we construct simultaneous eigenvectors on the q-Fock space using nonsymmetric Macdonald polynomials. Then the isomorphism is given by corresponding these vectors to the torus fixed points on the quiver varieties.
Let R be a commutative noetherian ring. In this paper, we study specialization-closed subsets of Spec R. More precisely, we first characterize the specialization-closed subsets in terms of various closure properties of subcategories of modules. Then, for each nonnegative integer n we introduce the notion of n-wide subcategories of R-modules to consider the question asking when a given specialization-closed subset has cohomological dimension at most n.
We provide elementary identities relating the three known types of non-symmetric interpolation Macdonald polynomials. In addition we derive a duality for non-symmetric interpolation Macdonald polynomials. We consider some applications of these result s, in particular for binomial formulas involving non-symmetric interpolation Macdonald polynomials.
198 - Cuipo Jiang , Haisheng Li 2013
We study a particular category ${cal{C}}$ of $gl_{infty}$-modules and a subcategory ${cal{C}}_{int}$ of integrable $gl_{infty}$-modules. As the main results, we classify the irreducible modules in these two categories and we show that every module in category ${cal{C}}_{int}$ is semi-simple. Furthermore, we determine the decomposition of the tensor products of irreducible modules in category ${cal{C}}_{int}$.
In the 90s a collection of Plethystic operators were introduced in [3], [7] and [8] to solve some Representation Theoretical problems arising from the Theory of Macdonald polynomials. This collection was enriched in the research that led to the resul ts which appeared in [5], [6] and [9]. However since some of the identities resulting from these efforts were eventually not needed, this additional work remained unpublished. As a consequence of very recent publications [4], [11], [19], [20], [21], a truly remarkable expansion of this theory has taken place. However most of this work has appeared in a language that is virtually inaccessible to practitioners of Algebraic Combinatorics. Yet, these developments have led to a variety of new conjectures in [2] in the Combinatorics and Symmetric function Theory of Macdonald Polynomials. The present work results from an effort to obtain in an elementary and accessible manner all the background necessary to construct the symmetric function side of some of these new conjectures. It turns out that the above mentioned unpublished results provide precisely the tools needed to carry out this project to its completion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا