ترغب بنشر مسار تعليمي؟ اضغط هنا

First-order bifurcation detection for dynamic complex networks

55   0   0.0 ( 0 )
 نشر من قبل Sijia Liu
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we explore how network centrality and network entropy can be used to identify a bifurcation network event. A bifurcation often occurs when a network undergoes a qualitative change in its structure as a response to internal changes or external signals. In this paper, we show that network centrality allows us to capture important topological properties of dynamic networks. By extracting multiple centrality features from a network for dimensionality reduction, we are able to track the network dynamics underlying an intrinsic low-dimensional manifold. Moreover, we employ von Neumann graph entropy (VNGE) to measure the information divergence between networks over time. In particular, we propose an asymptotically consistent estimator of VNGE so that the cubic complexity of VNGE is reduced to quadratic complexity that scales more gracefully with network size. Finally, the effectiveness of our approaches is demonstrated through a real-life application of cyber intrusion detection.



قيم البحث

اقرأ أيضاً

Complex networks tend to display communities which are groups of nodes cohesively connected among themselves in one group and sparsely connected to the remainder of the network. Detecting such communities is an important computational problem, since it provides an insight into the functionality of networks. Further, investigating community structure in a dynamic network, where the network is subject to change, is even more challenging. This paper presents a game-theoretical technique for detecting community structures in dynamic as well as static complex networks. In our method, each node takes the role of a player that attempts to gain a higher payoff by joining one or more communities or switching between them. The goal of the game is to reveal community structure formed by these players by finding a Nash-equilibrium point among them. To the best of our knowledge, this is the first game-theoretic algorithm which is able to extract overlapping communities from either static or dynamic networks. We present the experimental results illustrating the effectiveness of the proposed method on both synthetic and real-world networks.
The deployment of unmanned aerial vehicles (UAVs) is proliferating as they are effective, flexible and cost-efficient devices for a variety of applications ranging from natural disaster recovery to delivery of goods. We investigate a transmission mec hanism aiming to improve the data rate between a base station (BS) and a user equipment through deploying multiple relaying UAVs. We consider the effect of interference, which is incurred by the nodes of another established communication network. Our primary goal is to design the 3D trajectories and power allocation for the UAVs to maximize the data flow while the interference constraint is met. The UAVs can reconfigure their locations to evade the unintended/intended interference caused by reckless/smart interferers. We also consider the scenario in which smart jammers chase the UAVs to degrade the communication quality. In this case, we investigate the problem from the perspective of both UAV network and smart jammers. An alternating-maximization approach is proposed to address the joint 3D trajectory design and power allocation problem. We handle the 3D trajectory design by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Finally, we demonstrate the efficacy of our proposed method through simulations.
Cognitive ad-hoc networks allow users to access an unlicensed/shared spectrum without the need for any coordination via a central controller and are being envisioned for futuristic ultra-dense wireless networks. The ad-hoc nature of networks require each user to learn and regularly update various network parameters such as channel quality and the number of users, and use learned information to improve the spectrum utilization and minimize collisions. For such a learning and coordination task, we propose a distributed algorithm based on a multi-player multi-armed bandit approach and novel signaling scheme. The proposed algorithm does not need prior knowledge of network parameters (users, channels) and its ability to detect as well as adapt to the changes in the network parameters thereby making it suitable for static as well as dynamic networks. The theoretical analysis and extensive simulation results validate the superiority of the proposed algorithm over existing state-of-the-art algorithms.
There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal ev olution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.
174 - Yi Zhang , Qin Yang , Lifu Zhang 2020
Causal decomposition depicts a cause-effect relationship that is not based on the concept of prediction, but based on the phase dependence of time series. It has been validated in both stochastic and deterministic systems and is now anticipated for i ts application in the complex dynamic process. Here, we present an extension of causal decomposition in the mutual complex dynamic process: cause and effect of time series are inherited in the decomposition of intrinsic components in a similar time scale. Furthermore, we illustrate comparative studies with predominate methods used in neuroscience, and show the applicability of the method particularly to physiological time series in brain-muscle interactions, implying the potential to the causality analysis in the complex physiological process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا