ﻻ يوجد ملخص باللغة العربية
Electrical resistivity, magnetic susceptibility, and specific heat measurements on single crystals of La$Tr_{2}$Al$_{20}$ ($Tr$ = Ti, V, Nb, and Ta) revealed that these four compounds exhibit weak-coupling superconductivity with transition temperatures $T_{rm c}$ = 0.46, 0.15, 1.05, and 1.03 K, respectively. LaTi$_{2}$Al$_{20}$ is most probably a type-I superconductor, which is quite rare among intermetallic compounds. Single-crystal X-ray diffraction suggests rattling anharmonic large-amplitude oscillations of Al ions (16$c$ site) on the Al$_{16}$ cage, while no such feature is suggested for the cage-center La ion. Using a parameter $d_{rm GFS}$ quantifying the guest free space of the cage-center ion, we demonstrate that nonmagnetic $RTr_{2}$Al$_{20}$ superconductors are classified into two groups, i.e., (A) $d_{rm GFS} e 0$ and $T_{rm c}$ correlates with $d_{rm GFS}$, and (B) $d_{rm GFS} simeq 0$ and $T_{rm c}$ seems to be governed by other factors.
Electrical resistivity, magnetic susceptibility, and specific heat measurements on single crystals of La$Tr_2$Al$_{20}$ with $Tr$ = Mo and W revealed that these compounds exhibit superconductivity with transition temperatures $T_c$ = 3.22 and 1.81 K,
High-entropy alloys (HEAs) are at the focus of current research for their diverse properties, including superconductivity and structural polymorphism. However, the polymorphic transition has been observed only in nonsuperconducting HEAs and mostly un
The interplay between superconductivity and charge density wave (CDW)/metal-to-insulator transition (MIT) has long been interested and studied in condensed matter physics. Here we study systematically the charge density wave and superconductivity pro
Superconductivity in PrIr$_{2}$Zn$_{20}$ appears at $T_{rm c} = 0.05$ K in the presence of an antiferroquadrupolar order below $T_{rm Q} = 0.11$ K. We have studied pressure dependences of $T_{rm c}$, $T_{rm Q}$, and non-Fermi liquid behaviors in the
Strong electron correlations are responsible both for the insulator ground state of undoped La$_2$CuO$_4$ and strong antiferromagnetic coupling $J$ between neighbouring spins. We consider magnetic mechanism of superconducting pairing in the effective