ﻻ يوجد ملخص باللغة العربية
We present a framework to link and describe AGN variability on a wide range of timescales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different timescales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio ($L/L_{rm Edd}$) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the $L/L_{rm Edd}$ distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different timescales, therefore providing new insights into AGN variability and black hole growth phenomena.
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of two flat spectrum radio quasars, 3C 454.3 and 3C 279, plus one BL Lac, S5 0716+714, all of which have been exhibiting remarkably high activ
Active galactic nuclei (AGN) are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. On such short timescales, unexplored territory, such as the possible
Here we present the evidence for periodicity of an optical emission detected in several AGN. Significant periodicity is found in light curves and radial velocity curves. We discuss possible mechanisms that could produce such periodic variability and
Synchrotron self-absorption in active galactic nuclei (AGN) jets manifests itself as a time delay between flares observed at high and low radio frequencies. It is also responsible for the observing frequency dependent change in size and position of t
An accretion disk in an Active Galactic Nucleus (AGN) harbors and shields dust from external illumination: at the mid-plane of the disk around a $M_{{rm BH}}=10^{7}M_{odot}$ black hole, dust can exist at $0.1$pc from the black hole, compared to 0.5pc