ﻻ يوجد ملخص باللغة العربية
In this paper we propose a new algorithm for streaming principal component analysis. With limited memory, small devices cannot store all the samples in the high-dimensional regime. Streaming principal component analysis aims to find the $k$-dimensional subspace which can explain the most variation of the $d$-dimensional data points that come into memory sequentially. In order to deal with large $d$ and large $N$ (number of samples), most streaming PCA algorithms update the current model using only the incoming sample and then dump the information right away to save memory. However the information contained in previously streamed data could be useful. Motivated by this idea, we develop a new streaming PCA algorithm called History PCA that achieves this goal. By using $O(Bd)$ memory with $Bapprox 10$ being the block size, our algorithm converges much faster than existing streaming PCA algorithms. By changing the number of inner iterations, the memory usage can be further reduced to $O(d)$ while maintaining a comparable convergence speed. We provide theoretical guarantees for the convergence of our algorithm along with the rate of convergence. We also demonstrate on synthetic and real world data sets that our algorithm compares favorably with other state-of-the-art streaming PCA methods in terms of the convergence speed and performance.
We present and analyze a simple, two-step algorithm to approximate the optimal solution of the sparse PCA problem. Our approach first solves a L1 penalized version of the NP-hard sparse PCA optimization problem and then uses a randomized rounding str
We consider the following multi-component sparse PCA problem: given a set of data points, we seek to extract a small number of sparse components with disjoint supports that jointly capture the maximum possible variance. These components can be comput
We introduce a variant of (sparse) PCA in which the set of feasible support sets is determined by a graph. In particular, we consider the following setting: given a directed acyclic graph $G$ on $p$ vertices corresponding to variables, the non-zero e
We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its
As a prominent variant of principal component analysis (PCA), sparse PCA attempts to find sparse loading vectors when conducting dimension reduction. This paper aims to calculate sparse PCA through solving an optimization problem pursuing orthogonali