ﻻ يوجد ملخص باللغة العربية
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at -18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two $^{83mathrm{m}}$Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRINs commissioning measurements in July 2017. The measured scale factor $M=1972.449(10)$ of the high-voltage divider K35 is in agreement with the last PTB calibration four years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration
We report on the preparation of and calibration measurements with a $^{83mathrm{m}}$Kr source for the CENNS-10 liquid argon detector. $^{83mathrm{m}}$Kr atoms generated in the decay of a $^{83}$Rb source were introduced into the detector via injectio
The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of $0.2,{text{eV}/c^2}$ (90% C.L.) by precision measurement of the shape of the tritium textbeta-spectrum in the endpoint region. The energy analysis of t
LUX was the first dark matter experiment to use a $^{83textrm{m}}$Kr calibration source. In this paper we describe the source preparation and injection. We also present several $^{83textrm{m}}$Kr calibration applications in the context of the 2013 LU
The method of direct neutrino mass determination based on the kinematics of tritium beta decay, which is adopted by the KATRIN experiment, makes use of a large, high-resolution electrostatic spectrometer with magnetic adiabatic collimation. In order