ترغب بنشر مسار تعليمي؟ اضغط هنا

The SAMI Galaxy Survey: gravitational potential and surface density drive stellar populations -- I. early-type galaxies

67   0   0.0 ( 0 )
 نشر من قبل Tania Barone
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The well-established correlations between the mass of a galaxy and the properties of its stars are considered evidence for mass driving the evolution of the stellar population. However, for early-type galaxies (ETGs), we find that $g-i$ color and stellar metallicity [Z/H] correlate more strongly with gravitational potential $Phi$ than with mass $M$, whereas stellar population age correlates best with surface density $Sigma$. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the SAMI Galaxy Survey, compared to correlations with mass, the color--$Phi$, [Z/H]--$Phi$, and age--$Sigma$ relations show both smaller scatter and less residual trend with galaxy size. For the star formation duration proxy [$alpha$/Fe], we find comparable results for trends with $Phi$ and $Sigma$, with both being significantly stronger than the [$alpha$/Fe]-$M$ relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color--$Phi$ diagram is a more precise tool for determining the developmental stage of the stellar population than the conventional color--mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [$alpha$/Fe] relations with $Sigma$: (a) the age--$Sigma$ and [$alpha$/Fe]--$Sigma$ correlations arise as results of compactness driven quenching mechanisms; and/or (b) as fossil records of the $Sigma_{SFR}proptoSigma_{gas}$ relation in their disk-dominated progenitors.



قيم البحث

اقرأ أيضاً

78 - Tania M. Barone 2020
Stellar population parameters correlate with a range of galaxy properties, but it is unclear which relations are causal and which are the result of another underlying trend. In this series, we quantitatively compare trends between stellar population properties and galaxy structural parameters in order to determine which relations are intrinsically tighter, and are therefore more likely to reflect a causal relation. Specifically, we focus on the galaxy structural parameters of mass $M$, gravitational potential $Phisim M/R_e$, and surface mass density $Sigmasim M/R_e^2$. In Barone et al. (2018) we found that for early-type galaxies the age-$Sigma$ and [Z/H]-$Phi$ relations show the least intrinsic scatter as well as the least residual trend with galaxy size. In this work we study the ages and metallicities measured from full spectral fitting of 2085 star-forming galaxies from the SDSS Legacy Survey, selected so all galaxies in the sample are probed to one effective radius. As with the trends found in early-type galaxies, we find that in star-forming galaxies age correlates best with stellar surface mass density, and [Z/H] correlates best with gravitational potential. We discuss multiple mechanisms that could lead to these scaling relations. For the [Z/H]--$Phi$ relation we conclude that gravitational potential is the primary regulator of metallicity, via its relation to the gas escape velocity. The age--$Sigma$ relation is consistent with compact galaxies forming earlier, as higher gas fractions in the early universe cause old galaxies to form more compactly during their in-situ formation phase, and may be reinforced by compactness-related quenching mechanisms.
We study the internal radial gradients of the stellar populations in a sample comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney- AAO Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra of individual spaxels in radial bins, and derive basic stellar population properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial gradient ($ abla$) and central value of the fits (evaluated at R$_e$/4) are compared against a set of six possible drivers of the trends. We find that velocity dispersion ($sigma$) - or, equivalently gravitational potential - is the dominant driver of the chemical composition gradients. Surface mass density is also correlated with the trends, especially with stellar age. The decrease of $ abla$[Mg/Fe] with increasing $sigma$ is contrasted by a rather shallow dependence of $ abla$[Z/H] with $sigma$ (although this radial gradient is overall rather steep). This result, along with a shallow age slope at the massive end, imposes stringent constraints on the progenitors of the populations that contribute to the formation of the outer envelopes of ETGs. The SAMI sample is split between a field sample and a cluster sample. Only weak environment-related differences are found, most notably a stronger dependence of central total metallicity ([Z/H]$_{e4}$) with $sigma$, along with a marginal trend of $ abla$[Z/H] to steepen in cluster galaxies, a result that is not followed by [Mg/Fe]. The results presented here serve as constraints on numerical models of the formation and evolution of ETGs.
Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is pecu liar as X-ray halos of these galaxies are expected to destroy dust in 10 Myr (or less). This has sparked a debate regarding the origin of the dust: is it internally produced by asymptotic giant branch (AGB) stars, or is it accreted externally through mergers? We examine the 2D stellar and ionised gas kinematics of dusty ETGs using IFS observations from the SAMI galaxy survey, and integrated star-formation rates, stellar masses, and dust masses from the GAMA survey. Only 8% (4/49) of visually-classified ETGs are kinematically consistent with being dispersion-supported systems. These dispersion-dominated galaxies exhibit discrepancies between stellar and ionised gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star-formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining 90% of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of rotation-dominated galaxies. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low stellar mass when compared to dispersion-dominated galaxies. This means dust will be long lived and thus these galaxies do not require external scenarios for the origin of their dust content.
We investigate the stellar populations of passive spiral galaxies as a function of mass and environment, using integral field spectroscopy data from the Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey. Our sample consists of $52$ cl uster passive spirals and $18$ group/field passive spirals, as well as a set of S0s used as a control sample. The age and [Z/H] estimated by measuring Lick absorption line strength indices both at the center and within $1R_{rm e}$ do not show a significant difference between the cluster and the field/group passive spirals. However, the field/group passive spirals with log(M$_star$/M$_odot)gtrsim10.5$ show decreasing [$alpha$/Fe] along with stellar mass, which is $sim0.1$ dex smaller than that of the cluster passive spirals. We also compare the stellar populations of passive spirals with S0s. In the clusters, we find that passive spirals show slightly younger age and lower [$alpha$/Fe] than the S0s over the whole mass range. In the field/group, stellar populations show a similar trend between passive spirals and S0s. In particular, [$alpha$/Fe] of the field/group S0s tend to be flattening with increasing mass above log(M$_star$/M$_odot)gtrsim10.5$, similar to the field/group passive spirals. We relate the age and [$alpha$/Fe] of passive spirals to their mean infall time in phase-space; we find a positive correlation, in agreement with the prediction of numerical simulations. We discuss the environmental processes that can explain the observed trends. The results lead us to conclude that the formation of the passive spirals and their transformation into S0s may significantly depend on their environments.
We present the first in a series of papers in T$h$e role of $E$nvironment in shaping $L$ow-mass $E$arly-type $N$earby g$a$laxies (hELENa) project. In this paper we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs ) from the ATLAS$^{mathrm{3D}}$ survey - all observed with the SAURON integral field unit (IFU) - to investigate early-type galaxies stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-{sigma} regime of dEs. The ages in our sample show more scatter at lower {sigma} values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-{sigma} relation for cluster vs. non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages negatively correlate with the local density, likely because galaxies in regions of lower density are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا