ﻻ يوجد ملخص باللغة العربية
This paper presents multiple-modes Scanning Probe Microscopy (SPM) studies on characterize resistance switching (RS), polarization rotation (PO) and surface potential changes in copper doped ZnO (ZnO:Cu) thin films. The bipolar RS behavior is confirmed by conductive Atomic Force Microscopy (c-AFM). The PO with almost 180{deg} phase angle is confirmed by using the vertical and lateral Piezoresponse Force Microscopy (PFM). In addition, it elucidates that obvious polarization rotation behavior can be observed in the sample with increasing Cu concentration. Furthermore, correlation of the RS behavior with PO behavior has been studied by performing various mode SPM measurements on the same location. The electric field resulted from the opposite polarization orientation are corresponded to the different resistance states. It is found that the region with the polarization in downward direction has low resistance state (LRS), whereas the region with upward polarization has high resistance state (HRS). In addition, the Piezoresponse Force Spectroscopy (PFS) and Switching Spectroscopy PFM (SS-PFM) measurements further confirm that the existence of the built-in field due to the uncomplemented polarization may affect the depletion region and hence contribute to the RS behavior. In addition, Kelvin Probe Force Microscopy (KPFM) results show that, when ZnO-based thin films is subjected to negative and then followed by positive sample bias, injection charge limit current is dominated.
Copper ferrite thin films were rf sputtered at a power of 50W. The as deposited films were annealed in air at 800{deg}C and slow cooled. The transmission electron microscope (TEM) studies were carried out on as deposited as well as on slow cooled fil
In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structure and morphology and synthesized by pulsed laser deposition (PLD) under differen
Thin film oxides are a source of endless fascination for the materials scientist. These materials are highly flexible, can be integrated into almost limitless combinations, and exhibit many useful functionalities for device applications. While precis
Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. We demonstrate cohere
The graphene moire structures on metals, as they demonstrate both long (moire) and short (atomic) scale ordered structures, are the ideal systems for the application of scanning probe methods. Here we present the complex studies of the graphene/Ir(11