ﻻ يوجد ملخص باللغة العربية
An important challenge for human-like AI is compositional semantics. Recent research has attempted to address this by using deep neural networks to learn vector space embeddings of sentences, which then serve as input to other tasks. We present a new dataset for one such task, `natural language inference (NLI), that cannot be solved using only word-level knowledge and requires some compositionality. We find that the performance of state of the art sentence embeddings (InferSent; Conneau et al., 2017) on our new dataset is poor. We analyze the decision rules learned by InferSent and find that they are consistent with simple heuristics that are ecologically valid in its training dataset. Further, we find that augmenting training with our dataset improves test performance on our dataset without loss of performance on the original training dataset. This highlights the importance of structured datasets in better understanding and improving AI systems.
When the meaning of a phrase cannot be inferred from the individual meanings of its words (e.g., hot dog), that phrase is said to be non-compositional. Automatic compositionality detection in multi-word phrases is critical in any application of seman
Sentence embedding methods using natural language inference (NLI) datasets have been successfully applied to various tasks. However, these methods are only available for limited languages due to relying heavily on the large NLI datasets. In this pape
Sentence embeddings have become an essential part of todays natural language processing (NLP) systems, especially together advanced deep learning methods. Although pre-trained sentence encoders are available in the general domain, none exists for bio
This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objecti
It is well-known that typical word embedding methods such as Word2Vec and GloVe have the property that the meaning can be composed by adding up the embeddings (additive compositionality). Several theories have been proposed to explain additive compos