ﻻ يوجد ملخص باللغة العربية
Transistors play a vital role in classical computers, and their quantum mechanical counterparts could potentially be as important in quantum computers. Where a classical transistor is operated as a switch that either blocks or allows an electric current, the quantum transistor should operate on quantum information. In terms of a spin model the in-going quantum information is an arbitrary qubit state (spin-1/2 state). In this paper, we derive a model of four qubits with Heisenberg interactions that works as a quantum spin transistor, i.e. a system with perfect state transfer or perfect blockade depending on the state of two gate qubits. When the system is initialized the dynamics complete the gate operation, hence our protocol requires minimal external control. We propose a concrete implementation of the model using state-of-the-art superconducting circuits. Finally, we demonstrate that our proposal operates with high-fidelity under realistic decoherence.
We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster-state provides the quantum resource, whil
A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capa
We derive a theory for the generation of arbitrary spin-spin interactions in superconducting circuits via periodic time modulation of the individual qubits or the qubit-qubit interactions. The modulation frequencies in our approach are in the microwa
Quantum computers promise to solve certain problems exponentially faster than possible classically but are challenging to build because of their increased susceptibility to errors. Remarkably, however, it is possible to detect and correct errors with
Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Giv