ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Reject Option Classifier Using Successive Linear Programming

176   0   0.0 ( 0 )
 نشر من قبل Naresh Manwani
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an approach for learning sparse reject option classifiers using double ramp loss $L_{dr}$. We use DC programming to find the risk minimizer. The algorithm solves a sequence of linear programs to learn the reject option classifier. We show that the loss $L_{dr}$ is Fisher consistent. We also show that the excess risk of loss $L_d$ is upper bounded by the excess risk of $L_{dr}$. We derive the generalization error bounds for the proposed approach. We show the effectiveness of the proposed approach by experimenting it on several real world datasets. The proposed approach not only performs comparable to the state of the art but it also successfully learns sparse classifiers.



قيم البحث

اقرأ أيضاً

334 - Kulin Shah , Naresh Manwani 2019
Active learning is an important technique to reduce the number of labeled examples in supervised learning. Active learning for binary classification has been well addressed in machine learning. However, active learning of the reject option classifier remains unaddressed. In this paper, we propose novel algorithms for active learning of reject option classifiers. We develop an active learning algorithm using double ramp loss function. We provide mistake bounds for this algorithm. We also propose a new loss function called double sigmoid loss function for reject option and corresponding active learning algorithm. We offer a convergence guarantee for this algorithm. We provide extensive experimental results to show the effectiveness of the proposed algorithms. The proposed algorithms efficiently reduce the number of label examples required.
We consider the bandit problem of selecting $K$ out of $N$ arms at each time step. The reward can be a non-linear function of the rewards of the selected individual arms. The direct use of a multi-armed bandit algorithm requires choosing among $binom {N}{K}$ options, making the action space large. To simplify the problem, existing works on combinatorial bandits {typically} assume feedback as a linear function of individual rewards. In this paper, we prove the lower bound for top-$K$ subset selection with bandit feedback with possibly correlated rewards. We present a novel algorithm for the combinatorial setting without using individual arm feedback or requiring linearity of the reward function. Additionally, our algorithm works on correlated rewards of individual arms. Our algorithm, aDaptive Accept RejecT (DART), sequentially finds good arms and eliminates bad arms based on confidence bounds. DART is computationally efficient and uses storage linear in $N$. Further, DART achieves a regret bound of $tilde{mathcal{O}}(Ksqrt{KNT})$ for a time horizon $T$, which matches the lower bound in bandit feedback up to a factor of $sqrt{log{2NT}}$. When applied to the problem of cross-selling optimization and maximizing the mean of individual rewards, the performance of the proposed algorithm surpasses that of state-of-the-art algorithms. We also show that DART significantly outperforms existing methods for both linear and non-linear joint reward environments.
The study of healthy brain development helps to better understand the brain transformation and brain connectivity patterns which happen during childhood to adulthood. This study presents a sparse machine learning solution across whole-brain functiona l connectivity (FC) measures of three sets of data, derived from resting state functional magnetic resonance imaging (rs-fMRI) and task fMRI data, including a working memory n-back task (nb-fMRI) and an emotion identification task (em-fMRI). These multi-modal image data are collected on a sample of adolescents from the Philadelphia Neurodevelopmental Cohort (PNC) for the prediction of brain ages. Due to extremely large variable-to-instance ratio of PNC data, a high dimensional matrix with several irrelevant and highly correlated features is generated and hence a pattern learning approach is necessary to extract significant features. We propose a sparse learner based on the residual errors along the estimation of an inverse problem for the extreme learning machine (ELM) neural network. The purpose of the approach is to overcome the overlearning problem through pruning of several redundant features and their corresponding output weights. The proposed multimodal sparse ELM classifier based on residual errors (RES-ELM) is highly competitive in terms of the classification accuracy compared to its counterparts such as conventional ELM, and sparse Bayesian learning ELM.
We address the problem of reconstructing sparse signals from noisy and compressive measurements using a feed-forward deep neural network (DNN) with an architecture motivated by the iterative shrinkage-thresholding algorithm (ISTA). We maintain the we ights and biases of the network links as prescribed by ISTA and model the nonlinear activation function using a linear expansion of thresholds (LET), which has been very successful in image denoising and deconvolution. The optimal set of coefficients of the parametrized activation is learned over a training dataset containing measurement-sparse signal pairs, corresponding to a fixed sensing matrix. For training, we develop an efficient second-order algorithm, which requires only matrix-vector product computations in every training epoch (Hessian-free optimization) and offers superior convergence performance than gradient-descent optimization. Subsequently, we derive an improved network architecture inspired by FISTA, a faster version of ISTA, to achieve similar signal estimation performance with about 50% of the number of layers. The resulting architecture turns out to be a deep residual network, which has recently been shown to exhibit superior performance in several visual recognition tasks. Numerical experiments demonstrate that the proposed DNN architectures lead to 3 to 4 dB improvement in the reconstruction signal-to-noise ratio (SNR), compared with the state-of-the-art sparse coding algorithms.
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy for an analyst to know a good clustering when they see one. We present a new approach to interactive clustering for data exploration called TINDER, based on a particularly simple feedback mechanism, in which an analyst can reject a given clustering and request a new one, which is chosen to be different from the previous clustering while fitting the data well. We formalize this interaction in a Bayesian framework as a method for prior elicitation, in which each different clustering is produced by a prior distribution that is modified to discourage previously rejected clusterings. We show that TINDER successfully produces a diverse set of clusterings, each of equivalent quality, that are much more diverse than would be obtained by randomized restarts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا