ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet spectroscopy of a strongly driven quantum dot charge qubit with a microwave resonator

89   0   0.0 ( 0 )
 نشر من قبل Jonne Koski V.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit - resonator resonance condition. This way we probe the resonance of a qubit that is driven in an adiabatic, a non-adiabatic, or an intermediate rate showing distinct quantum features of multi-photon processes and Landau-Zener-Stuckelberg interference pattern. Our resonant detection scheme enables the investigation of novel features when the drive frequency is comparable to the resonator frequency. Models based on adiabatic approximation, rotating wave approximation, and Floquet theory explain our experimental observations.



قيم البحث

اقرأ أيضاً

As an application in circuit quantum electrodynamics (cQED) coupled systems, superconducting resonators play an important role in high-sensitivity measurements in a superconductingsemiconductor hybrid architecture. Taking advantage of a high-impedanc e NbTiN resonator, we perform excited-state spectroscopy on a GaAs double quantum dot (DQD) by applying voltage pulses to one gate electrode. The pulse train modulates the DQD energy detuning and gives rise to charge state transitions at zero detuning. Benefiting from the outstanding sensitivity of the resonator, we distinguish different spin-state transitions in the energy spectrum according to the Pauli exclusion principle. Furthermore, we experimentally study how the interdot tunneling rate modifies the resonator response. The experimental results are consistent with the simulated spectra based on our model.
Carbon nanotube quantum dots allow accurate control of electron charge, spin and valley degrees of freedom in a material which is atomically perfect and can be grown isotopically pure. These properties underlie the unique potential of carbon nanotube s for quantum information processing, but developing nanotube charge, spin, or spin-valley qubits requires efficient readout techniques as well as understanding and extending quantum coherence in these devices. Here, we report on microwave spectroscopy of a carbon nanotube charge qubit in which quantum information is encoded in the spatial position of an electron. We combine radio-frequency reflectometry measurements of the quantum capacitance of the device with microwave manipulation to drive transitions between the qubit states. This approach simplifies charge-state readout and allows us to operate the device at an optimal point where the qubit is first-order insensitive to charge noise. From these measurements, we are able to quantify the degree of charge noise experienced by the qubit and obtain an inhomogeneous charge coherence of 5 ns. We use a chopped microwave signal whose duty-cycle period is varied to measure the decay of the qubit states, yielding a charge relaxation time of 48 ns.
120 - T. Frey , P. J. Leek , M. Beck 2011
We present measurements of a hybrid system consisting of a microwave transmission-line resonator and a lateral quantum dot defined on a GaAs heterostructure. The two subsystems are separately characterized and their interaction is studied by monitori ng the electrical conductance through the quantum dot. The presence of a strong microwave field in the resonator is found to reduce the resonant conductance through the quantum dot, and is attributed to electron heating and modulation of the dot potential. We use this interaction to demonstrate a measurement of the resonator transmission spectrum using the quantum dot.
122 - T. Frey , P. J. Leek , M. Beck 2011
Quantum coherence in solid-state systems has been demonstrated in superconducting circuits and in semiconductor quantum dots. This has paved the way to investigate solid-state systems for quantum information processing with the potential benefit of s calability compared to other systems based on atoms, ions and photons. Coherent coupling of superconducting circuits to microwave photons, circuit quantum electrodynamics (QED), has opened up new research directions and enabled long distance coupling of qubits. Here we demonstrate how the electromagnetic field of a superconducting microwave resonator can be coupled to a semiconductor double quantum dot. The charge stability diagram of the double dot, typically measured by direct current (DC) transport techniques, is investigated via dispersive frequency shifts of the coupled resonator. This hybrid all-solid-state approach offers the potential to coherently couple multiple quantum dot and superconducting qubits together on one chip, and offers a method for high resolution spectroscopy of semiconductor quantum structures.
The interference between repeated Landau-Zener transitions in a qubit swept through an avoided level crossing results in Stueckelberg oscillations in qubit magnetization. The resulting oscillatory patterns are a hallmark of the coherent strongly-driv en regime in qubits, quantum dots and other two-level systems. The two-dimensional Fourier transforms of these patterns are found to exhibit a family of one-dimensional curves in Fourier space, in agreement with recent observations in a superconducting qubit. We interpret these images in terms of time evolution of the quantum phase of qubit state and show that they can be used to probe dephasing mechanisms in the qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا