ﻻ يوجد ملخص باللغة العربية
As a means of improving analysis of biological shapes, we propose an algorithm for sampling a Riemannian manifold by sequentially selecting points with maximum uncertainty under a Gaussian process model. This greedy strategy is known to be near-optimal in the experimental design literature, and appears to outperform the use of user-placed landmarks in representing the geometry of biological objects in our application. In the noiseless regime, we establish an upper bound for the mean squared prediction error (MSPE) in terms of the number of samples and geometric quantities of the manifold, demonstrating that the MSPE for our proposed sequential design decays at a rate comparable to the oracle rate achievable by any sequential or non-sequential optimal design; to our knowledge this is the first result of this type for sequential experimental design. The key is to link the greedy algorithm to reduced basis methods in the context of model reduction for partial differential equations. We expect this approach will find additional applications in other fields of research.
We demonstrate applications of the Gaussian process-based landmarking algorithm proposed in [T. Gao, S.Z. Kovalsky, and I. Daubechies, SIAM Journal on Mathematics of Data Science (2019)] to geometric morphometrics, a branch of evolutionary biology ce
Gaussian processes (GPs) are highly flexible function estimators used for geospatial analysis, nonparametric regression, and machine learning, but they are computationally infeasible for large datasets. Vecchia approximations of GPs have been used to
Infrastructure recovery time estimation is critical to disaster management and planning. Inspired by recent resilience planning initiatives, we consider a situation where experts are asked to estimate the time for different infrastructure systems to
This work proposes a nonparametric method to compare the underlying mean functions given two noisy datasets. The motivation for the work stems from an application of comparing wind turbine power curves. Comparing wind turbine data presents new proble
We study the problem of sparse signal detection on a spatial domain. We propose a novel approach to model continuous signals that are sparse and piecewise smooth as product of independent Gaussian processes (PING) with a smooth covariance kernel. The