In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even$-$even isotopes of Fe, Ni, Zn, Ge, Se and Kr within the framework of the axially deformed self-consistent relativistic mean field for the non-linear NL3$^*$ and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 $leq$ A $leq$ 96. From this analysis, we found a notable signature of a shell closure at $N$ = 50 in the isotopic chains of Fe, Ni, Zn, Ge, Se and Kr nuclei. The present study reveals an interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei