ﻻ يوجد ملخص باللغة العربية
The Hubble constant ($H_0$) estimated from the local Cepheid-supernova (SN) distance ladder is in 3-$sigma$ tension with the value extrapolated from cosmic microwave background (CMB) data assuming the standard cosmological model. Whether this tension represents new physics or systematic effects is the subject of intense debate. Here, we investigate how new, independent $H_0$ estimates can arbitrate this tension, assessing whether the measurements are consistent with being derived from the same model using the posterior predictive distribution (PPD). We show that, with existing data, the inverse distance ladder formed from BOSS baryon acoustic oscillation measurements and the Pantheon SN sample yields an $H_0$ posterior near-identical to the Planck CMB measurement. The observed local distance ladder value is a very unlikely draw from the resulting PPD. Turning to the future, we find that a sample of $sim50$ binary neutron star standard sirens (detectable within the next decade) will be able to adjudicate between the local and CMB estimates.
Multi-messenger observations of binary neutron star mergers offer a promising path towards resolution of the Hubble constant ($H_0$) tension, provided their constraints are shown to be free from systematics such as the Malmquist bias. In the traditio
Quasars have recently been used as an absolute distance indicator, extending the Hubble diagram to high redshift to reveal a deviation from the expansion history predicted for the standard, $Lambda$CDM cosmology. Here we show that the Laser Interfero
The current Hubble constant tension is usually presented by comparing constraints on $H_0$ only. However, the post-recombination background cosmic evolution is determined by two parameters in the standard $Lambda$CDM model, the Hubble constant ($H_0$
New Early Dark Energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [arXiv:1910.10739]. The NEDE component has the potential to resolve the tension betwe
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f