ﻻ يوجد ملخص باللغة العربية
Nano resonators in which mechanical vibrations and spin waves can be coupled are an intriguing concept that can be used in quantum information processing to transfer information between different states of excitation. Until now, the fabrication of free standing magnetic nanostructures which host long lived spin wave excitatons and may be suitable as mechanical resonators seemed elusive. We demonstrate the fabrication of free standing monocrystalline yttrium iron garnet (YIG) 3D nanoresonators with nearly ideal magnetic properties. The freestanding 3D structures are obtained using a complex lithography process including room temperature deposition and lift-off of amorphous YIG and subsequent crystallization by annealing. The crystallization nucleates from the substrate and propagates across the structure even around bends over distances of several micrometers to form e.g. monocrystalline resonators as shown by transmission electron microscopy. Spin wave excitations in individual nanostructures are imaged by time resolved scanning Kerr microscopy. The narrow linewidth of the magnetic excitations indicates a Gilbert damping constant of only $alpha = 2.6 times 10^{-4}$ rivalling the best values obtained for epitaxial YIG thin film material. The new fabrication process represents a leap forward in magnonics and magnon mechanics as it provides 3D YIG structures of unprecedented quality. At the same time it demonstrates a completely new route towards the fabrication of free standing crystalline nano structures which may be applicable also to other material systems.
The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic co
In spintronics the propagation of spin-wave excitations in magnetically ordered materials can also be used to transport and process information. One of the most popular materials in this regard is the ferrimagnetic insulator yttrium-iron-garnet due i
Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators. Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying this interaction in yttrium iron
We present a systematic study of the temperature dependence of diffusive magnon spin transport, using a non-local device geometry. In our measurements, we detect spin signals arising from electrical and thermal magnon generation, and we directly extr
We investigated the effect of an external magnetic field on the diffusive spin transport by magnons in the magnetic insulator yttrium iron garnet (YIG), using a non-local magnon transport measurement geometry. We observed a decrease in magnon spin di