ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon absorption and electron scattering by endohedrals

80   0   0.0 ( 0 )
 نشر من قبل Miron Amusia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We concentrate here on photon absorption as well as electron and positron scattering upon endohedrals that consist of a fullerenes shell and an inner atom A. The aim is to understand the effect of fullerene electron shell in formation of corresponding cross-section. We consider the problem substituting the action of a complex multiatomic fullerenes shell by a combination of static pseudopotential and dynamic polarization potential. The electron correlations in the atom A are taken into account in the frame of the random phase approximation with exchange (RPAE). We demonstrate that the fullerenes shell strongly affects the cross-sections, bringing in a number of peculiarities, such as confinement resonances and giant-endohedral resonances and partial wave Ramsauer-type minima. Numerical data are obtained for endohedrals A@C60 and A@C60@C240, where A are noble gas atoms He, Ar and Xe.



قيم البحث

اقرأ أيضاً

In this Letter, we investigate the time delay of photoelectrons by fullerenes shell in endohedrals. We present general formulas in the frame of the random phase approximation with exchange (RPAE) applied to endohedrals A@CN that consist of an atom A located inside of a fullerenes shell constructed of N carbon atoms C. We calculate the time delay of electrons that leave the inner atom A in course of A@CN photoionization. Our aim is to clarify the role that is played by CN shell. As concrete examples of A we have considered Ne, Fr, Kr and Xe, and as fullerene we consider C60. The presence of the C60 shell manifests itself in powerful oscillations of the time delay of an electron that is ionized from a given subshell nl by a photon with energy. Calculations are performed for outer, subvalent and d-subshells.
We have calculated photoionization cross-section of endohedral atoms A@CN. We took into account the polarizability of the fullerene electron shell CN that modifies the incoming photon beam and the one-electron wave functions of the caged atom A. We employ simplifi
We study the process of absorption or emission of a bosonic collective excitation by a fermionic quasiparticle in a superfluid of paired fermions. From the RPA equation of motion of the bosonic excitation annihilation operator, we obtain an expressio n of the coupling amplitude of this process which is limited neither to resonant processes nor to the long wavelength limit. We confirm our result by independently deriving it in the functional integral approach using the gaussian fluctuation approximation, and by comparing it in the long wavelength limit to the quantum hydrodynamic result. Last, we give a straightforward application of the coupling amplitude we obtain by calculating the lifetime of the bosonic excitations of arbitrary wave number. We find a mode quality factor that decreases from its maximum at low wave numbers and vanishes when the bosonic branch hits the pair-breaking continuum.
Molecular absorption and photo-electron spectra can be efficiently predicted with real-time time-dependent density-functional theory (TDDFT). We show here how these techniques can be easily extended to study time-resolved pump-probe experiments in wh ich a system response (absorption or electron emission) to a probe pulse, is measured in an excited state. This simulation tool helps to interpret the fast evolving attosecond time-resolved spectroscopic experiments, where the electronic motion must be followed at its natural time-scale. We show how the extra degrees of freedom (pump pulse duration, intensity, frequency, and time-delay), which are absent in a conventional steady state experiment, provide additional information about electronic structure and dynamics that improve a system characterization. As an extension of this approach, time-dependent 2D spectroscopies can also be simulated, in principle, for large-scale structures and extended systems.
Within the framework of a Dirac bubble potential model for the C60 fullerene shell, we calculated the time delay in slow-electron elastic scattering by C60. It appeared that the time of transmission of an electron wave packet through the Dirac bubble potential sphere that simulates a real potential of the C60 cage exceeds by more than an order of magnitude the transmission time via a single atomic core. Resonances in the time delays are due to the temporary trapping of electron into quasi-bound states before it leaves the interaction region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا