ﻻ يوجد ملخص باللغة العربية
We concentrate here on photon absorption as well as electron and positron scattering upon endohedrals that consist of a fullerenes shell and an inner atom A. The aim is to understand the effect of fullerene electron shell in formation of corresponding cross-section. We consider the problem substituting the action of a complex multiatomic fullerenes shell by a combination of static pseudopotential and dynamic polarization potential. The electron correlations in the atom A are taken into account in the frame of the random phase approximation with exchange (RPAE). We demonstrate that the fullerenes shell strongly affects the cross-sections, bringing in a number of peculiarities, such as confinement resonances and giant-endohedral resonances and partial wave Ramsauer-type minima. Numerical data are obtained for endohedrals A@C60 and A@C60@C240, where A are noble gas atoms He, Ar and Xe.
In this Letter, we investigate the time delay of photoelectrons by fullerenes shell in endohedrals. We present general formulas in the frame of the random phase approximation with exchange (RPAE) applied to endohedrals A@CN that consist of an atom A
We have calculated photoionization cross-section of endohedral atoms A@CN. We took into account the polarizability of the fullerene electron shell CN that modifies the incoming photon beam and the one-electron wave functions of the caged atom A. We employ simplifi
We study the process of absorption or emission of a bosonic collective excitation by a fermionic quasiparticle in a superfluid of paired fermions. From the RPA equation of motion of the bosonic excitation annihilation operator, we obtain an expressio
Molecular absorption and photo-electron spectra can be efficiently predicted with real-time time-dependent density-functional theory (TDDFT). We show here how these techniques can be easily extended to study time-resolved pump-probe experiments in wh
Within the framework of a Dirac bubble potential model for the C60 fullerene shell, we calculated the time delay in slow-electron elastic scattering by C60. It appeared that the time of transmission of an electron wave packet through the Dirac bubble