ترغب بنشر مسار تعليمي؟ اضغط هنا

$p$-Harmonic Maps to $S^1$ and Stationary Varifolds of Codimension 2

66   0   0.0 ( 0 )
 نشر من قبل Daniel Stern
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Daniel Stern




اسأل ChatGPT حول البحث

We study the asymptotics as $puparrow 2$ of stationary $p$-harmonic maps $u_pin W^{1,p}(M,S^1)$ from a compact manifold $M^n$ to $S^1$, satisfying the natural energy growth condition $$int_M|du_p|^p=O(frac{1}{2-p}).$$ Along a subsequence $p_jto 2$, we show that the singular sets $Sing(u_{p_j})$ converge to the support of a stationary, rectifiable $(n-2)$-varifold $V$ of density $Theta_{n-2}(|V|,cdot)geq 2pi$, given by the concentrated part of the measure $$mu=lim_{jtoinfty}(2-p_j)|du_{p_j}|^{p_j}dv_g.$$ When $n=2$, we show moreover that the density of $|V|$ takes values in $2pimathbb{N}$. Finally, on every compact manifold of dimension $ngeq 2$ we produce examples of nontrivial families $(1,2) i pmapsto u_pin W^{1,p}(M,S^1)$ of such maps via natural min-max constructions.



قيم البحث

اقرأ أيضاً

73 - Daniel Stern 2019
For a harmonic map $u:M^3to S^1$ on a closed, oriented $3$--manifold, we establish the identity $$2pi int_{thetain S^1}chi(Sigma_{theta})geq frac{1}{2}int_{thetain S^1}int_{Sigma_{theta}}(|du|^{-2}|Hess(u)|^2+R_M)$$ relating the scalar curvature $R_M $ of $M$ to the average Euler characteristic of the level sets $Sigma_{theta}=u^{-1}{theta}$. As our primary application, we extend the Kronheimer--Mrowka characterization of the Thurston norm on $H_2(M;mathbb{Z})$ in terms of $|R_M^-|_{L^2}$ and the harmonic norm to any closed $3$--manifold containing no nonseparating spheres. Additional corollaries include the Bray--Brendle--Neves rigidity theorem for the systolic inequality $(min R_M)sys_2(M)leq 8pi$, and the well--known result of Schoen and Yau that $T^3$ admits no metric of positive scalar curvature.
388 - Ye-Lin Ou , Tiffany Troutman , 2011
We propose a new notion called emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $pto infty $. Infinity harmoncity appears in many familiar contexts. For example, metric projection onto the orbit of an isometric group action from a tubular neighborhood is infinity harmonic. Unfortunately, infinity-harmonicity is not preserved under composition. Those infinity harmonic maps that always preserve infinity harmonicity under pull back are called infinity harmonic morphisms. We show that infinity harmonic morphisms are precisely horizontally homothetic mas. Many example of infinity-harmonic maps are given, including some very important and well-known classes of maps between Riemannian manifolds.
Critical points of approximations of the Dirichlet energy `{a} la Sacks-Uhlenbeck are known to converge to harmonic maps in a suitable sense. However, we show that not every harmonic map can be approximated by critical points of such perturbed energi es. Indeed, we prove that constant maps and the rotations of $S^2$ are the only critical points of $E_{alpha}$ for maps from $S^2$ to $S^2$ whose $alpha$-energy lies below some threshold. In particular, nontrivial dilations (which are harmonic) cannot arise as strong limits of $alpha$-harmonic maps.
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3 9], F. H. Lin proposed a challenge problem: Can the Holder continuity be improved to Lipschitz continuity? J. Jost also asked a similar problem about Lipschitz regularity of harmonic maps between singular spaces (see Page 38 in [28]). The main theorem of this paper gives a complete resolution to it.
A result of B.Solomon (On the Gauss map of an area-minimizing hypersurface. 1984. Journal of Differential Geometry, 19(1), 221-232.) says that a compact minimal hypersurface $M^k$ of the sphere $S^{k+1}$ with $H^1(M)=0$, whose Gauss map omits a neigh borhood of an $S^{k-1}$ equator, is totally geodesic in $S^{k+1}$. We develop a new proof strategy which can also obtain an analogous result for codimension 2 compact minimal submanifolds of $S^{k+1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا