ترغب بنشر مسار تعليمي؟ اضغط هنا

Apically Dominant Mechanism for Improving Catalytic Activities of N-Doped Carbon Nanotube Arrays in Rechargeable Zinc-Air Battery

78   0   0.0 ( 0 )
 نشر من قبل Jose Mendoza-Cortes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The oxygen reduction (ORR) and oxygen evolution reactions (OER) in Zn-air batteries (ZABs) require highly efficient, cost-effective and stable electrocatalysts as replacements to traditionally high cost, inconsistently stable and low poison resistant Platinum group metals (PGM) catalysts. Although, nitrogen-doped carbon nanotube (NCNT) arrays have been developed over recent decades through various advanced technologies are now capable of catalyzing ORR efficiently, their underdeveloped bifunctional property, hydrophobic surface, and detrimental preparation strategy are found to limit practical large-scale commercialization for effective rechargeable ZABs. Here, we have demonstrated fabrication of a three-dimensional (3D) nickel foam supported NCNT arrays with CoNi nanoparticles (NPs) encapsulated within the apical domain (denoted as CoNi@NCNT/NF) that exhibits excellent bifunctional catalytic performance toward both ORR (onset potential of 0.97 V vs. RHE) and OER (overpotential of 1.54 V vs. RHE at 10 mA cm$^{-2}$). We further examined the practicability of this CoNi@NCNT/NF material being used as an air electrode for rechargeable ZAB coin cell and pouch cell systems. The ZAB coin cell showed a peak power density of 108 mW cm$^{-2}$ with an energy density of 845 Wh kg$_{Zn}^{-1}$ and robust rechargeability over 28h under ambient conditions, which exceeds the performance of PGM catalysts and leading non-PGM electrocatalysts. In addition, density functional theory (DFT) calculations revealed that the ORR and OER catalytic performance of the CoNi@NCNT/NF electrode are mainly derived from the d-orbitals from the CoNi NPs encapsulated within the apical dominant end of the NCNTs.



قيم البحث

اقرأ أيضاً

NADH is a key biomolecule involved in many biocatalytic processes as cofactor and its quantification can be correlated to specific enzymatic activity. Many efforts have been taken to obtain clean electrochemical signals related to NADH presence and l ower its redox overpotential to avoid interferences. Suppression of background and secondary signals can be achieved by including a switchable electroactive surface, for instance, by using semiconductors able to harvest light energy and drive the excited electrons only when irradiated. Here we present the combination of a n-type Si semiconductor with fibers made of carbon nanotubes as electroactive surface for NADH quantification at low potentials only upon irradiation. The resulting photoelectrode responded linearly to NADH concentrations from 50 {mu} M to 1.6 mM with high sensitivity (54 $mu$ A cm$^{-2}$ mM${-1}$). This system may serve as a biosensing platform for detection and quantification of dehydrogenases activity.
This paper presents a combined theoretical and experimental investigation of aqueous near-neutral electrolytes based on chloride salts for rechargeable zinc-air batteries (ZABs). The resilience of near-neutral chloride electrolytes in air could exten d ZAB lifetime, but theory-based simulations predict that such electrolytes are vulnerable to other challenges including pH instability and the unwanted precipitation of mixed zinc hydroxide chloride products. In this work, we combine theory-based simulations with experimental methods such as full cell cycling, operando pH measurements, ex-situ XRD, SEM, and EDS characterization to investigate the performance of ZABs with aqueous chloride electrolytes. The experimental characterization of near-neutral ZAB cells observes the predicted pH instability and confirms the composition of the final discharge products. Steps to promote greater pH stability and control the precipitation of discharge products are proposed.
Organic thermoelectrics are attractive for the fabrication of flexible and cost-effective thermoelectric generators (TEGs) for waste heat recovery, in particular by exploiting large-area printing of polymer conductors. Efficient TEGs require both p- and n-type conductors: so far, the air instability of polymer n-type conductors, which typically loose orders of magnitude in electrical conductivity ({sigma}) even for short exposure time to air, has impeded processing under ambient conditions. Here we tackle this problem in a relevant class of electron transporting, naphthalene-diimide co-polymers, by substituting the imide oxygen with sulphur. n-type doping of the thionated co-polymer gives rise to a higher {sigma} with respect to the non-thionated one, and most importantly, owing to a reduced energy level of the lowest-unoccupied molecular orbital, {sigma} is substantially stable over 16 h of air exposure. This result highlights the effectiveness of chemical tuning to improve air-stability of n-type solution-processable polymer conductors and shows a path towards ambient large-area manufacturing of efficient polymer TEGs.
Chirality-selected single-walled carbon nanotubes (SWCNTs) ensure a great potential of building ~1 nm sized electronics. However, the reliable method for chirality-selected SWCNT is still pending. Here we present a theoretical study on the SWCNTs chi rality assignment and control during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of the pentagon formation during SWCNT nucleation. Therefore, chirality is randomly assigned on a liquid catalyst surface. Furthermore, based on the understanding, two potential methods of synthesizing chirality-selected SWCNTs are proposed: i) by using Ta, W, Re, Os, or their alloys as solid catalysts, and ii) by changing the SWCNTs chirality frequently during the growth.
The conductivity of carbon nanotube (CNT) networks can be improved markedly by doping with nitric acid. In the present work, CNTs and junctions of CNTs functionalized with NO$_3$ molecules are investigated to understand the microscopic mechanism of n itric acid doping. According to our density functional theory band structure calculations, there is charge transfer from the CNT to adsorbed molecules indicating p-type doping. The average doping efficiency of the NO$_3$ molecules is higher if the NO$_3$ molecules form complexes with water molecules. In addition to electron transport along individual CNTs, we have also studied electron transport between different types (metallic, semiconducting) of CNTs. Reflecting the differences in the electronic structures of semiconducting and metallic CNTs, we have found that besides turning semiconducting CNTs metallic, doping further increases electron transport most efficiently along semiconducting CNTs as well as through a junction between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا