ﻻ يوجد ملخص باللغة العربية
On a countable tree $T$, allowing vertices with infinite degree, we consider an arbitrary stochastic irreducible nearest neighbour transition operator $P$. We provide a boundary integral representation for general eigenfunctions of $P$ with eigenvalue $lambda in mathbb{C}$. This is possible whenever $lambda$ is in the resolvent set of $P$ as a self-adjoint operator on a suitable $ell^2$-space and the on-diagonal elements of the resolvent (Green function) do not vanish at $lambda$. We show that when $P$ is invariant under a transitive (not necessarily fixed-point-free) group action, the latter condition holds for all $lambda e 0$ in the resolvent set. These results extend and complete previous results by Cartier, by Fig`a-Talamanca and Steger, and by Woess. For those eigenvalues, we also provide an integral representation of $lambda$-polyharmonic functions of any order $n$, that is, functions $f: T to mathbb{C}$ for which $(lambda cdot I - P)^n f=0$. This is a far-reaching extension of work of Cohen et al., who provided such a representation for simple random walk on a homogeneous tree and eigenvalue $lambda =1$. Finally, we explain the (much simpler) analogous results for forward only transition operators, sometimes also called martingales on trees.
We consider a countable tree $T$, possibly having vertices with infinite degree, and an arbitrary stochastic nearest neighbour transition operator $P$. We provide a boundary integral representation for general eigenfunctions of $P$ with eigenvalue $l
We study boundary values of harmonic functions in spaces of quasianalytic functionals and spaces of ultradistributions of non-quasianalytic type. As an application, we provide a new approach to Hormanders support theorem for quasianalytic functionals
We study extensions of Sobolev and BV functions on infinite-dimensional domains. Along with some positive results we present a negative solution of the long-standing problem of existence of Sobolev extensions of functions in Gaussian Sobolev spaces from a convex domain to the whole space.
We study infinite products of reproducing kernels with view to their use in dynamics (of iterated function systems), in harmonic analysis, and in stochastic processes. On the way, we construct a new family of representations of the Cuntz relations. T
We characterize the trace of magnetic Sobolev spaces defined in a half-space or in a smooth bounded domain in which the magnetic field $A$ is differentiable and its exterior derivative corresponding to the magnetic field $dA$ is bounded. In particula