ترغب بنشر مسار تعليمي؟ اضغط هنا

Volume growth, curvature, and Buser-type inequalities in graphs

54   0   0.0 ( 0 )
 نشر من قبل Peter Ralli
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the volume growth of metric balls as a function of the radius in discrete spaces, and focus on the relationship between volume growth and discrete curvature. We improve volume growth bounds under a lower bound on the so-called Ollivier curvature, and discuss similar results under other types of discrete Ricci curvature. Following recent work in the continuous setting of Riemannian manifolds (by the first author), we then bound the eigenvalues of the Laplacian of a graph under bounds on the volume growth. In particular, the spectral gap of the graph can be bounded using a weighted discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which only depend on the volume growth of the graph. As a direct application, we relate the eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe classes of graphs for which the Cheeger inequality is tight on the second eigenvalue. We also describe a method for proving Busers inequality in graphs, particularly under a lower bound assumption on curvature.



قيم البحث

اقرأ أيضاً

We are concerned with the study of different notions of curvature on graphs. We show that if a graph has stronger inner-outer curvature growth than a model graph, then it has faster volume growth too. We also study the relationhips of volume growth w ith other kind of curvatures, such as the Ollivier-Ricci curvature.
122 - Peter Ralli 2017
We study the curvature-dimension inequality in regular graphs. We develop techniques for calculating the curvature of such graphs, and we give characterizations of classes of graphs with positive, zero, and negative curvature. Our main result is to c ompare the curvature-dimension inequality in these classes to the so-called Ollivier curvature. A consequence of our results is that in the case that the graph contains no subgraph isomorphic to either $K_3$ or $K_{2,3}$ these curvatures usually have the same sign, and we characterize the exceptions.
In this note we give asymptotic estimates for the volume growth associated to suitable infinite graphs. Our main application is to give an asymptotic estimate for volume growth associated to translation surfaces.
In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a family of curvature functions including positive powers of $k $-th mean curvatures with $k=1,cdots,n$, and positive powers of $p$-th power sums $S_p$ with $p>0$. We prove that if the initial hypersurface $M_0$ is smooth and closed and has positive sectional curvatures, then the solution $M_t$ of the flow has positive sectional curvature for any time $t>0$, exists for all time and converges to a geodesic sphere exponentially in the smooth topology. The convergence result can be used to show that certain Alexandrov-Fenchel quermassintegral inequalities, known previously for horospherically convex hypersurfaces, also hold under the weaker condition of positive sectional curvature. In the second part of this paper, we study curvature flows for strictly horospherically convex hypersurfaces in hyperbolic space with speed given by a smooth, symmetric, increasing and homogeneous degree one function $f$ of the shifted principal curvatures $lambda_i=kappa_i-1$, plus a global term chosen to impose a constraint on the quermassintegrals of the enclosed domain, where $f$ is assumed to satisfy a certain condition on the second derivatives. We prove that if the initial hypersurface is smooth, closed and strictly horospherically convex, then the solution of the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology. As applications of the convergence result, we prove a new rigidity theorem on smooth closed Weingarten hypersurfaces in hyperbolic space, and a new class of Alexandrov-Fenchel type inequalities for smooth horospherically convex hypersurfaces in hyperbolic space.
244 - Michael Munn 2009
Let $M^n$ be a complete, open Riemannian manifold with $Ric geq 0$. In 1994, Grigori Perelman showed that there exists a constant $delta_{n}>0$, depending only on the dimension of the manifold, such that if the volume growth satisfies $alpha_M := lim _{r to infty} frac{Vol(B_p(r))}{omega_n r^n} geq 1-delta_{n}$, then $M^n$ is contractible. Here we employ the techniques of Perelman to find specific lower bounds for the volume growth, $alpha(k,n)$, depending only on $k$ and $n$, which guarantee the individual $k$-homotopy group of $M^n$ is trivial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا