ﻻ يوجد ملخص باللغة العربية
We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B, 76 165106 (2007)] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the non-local self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW, such as Si, LiF and h-BN, the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental bandgap and spectrum onset.
The discovery of atomically thin two-dimensional (2D) magnetic semiconductors has triggered enormous research interest recently. In this work, we use first-principles many-body perturbation theory to study a prototypical 2D ferromagnetic semiconducto
In the development of highly efficient photovoltaic cells, solid perovskite systems have demonstrated unprecedented promise, with the figure of merit exceeding nineteen percent of efficiency. In this paper, we investigate the optical and vibrational
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both f
We present a method to compute optical spectra and exciton binding energies of molecules and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation of the screened Coulomb interaction in finite field. The method does no
We present an approach to calculate the electronic structure for a range of materials using the quasiparticle self-consistent GW method with vertex corrections included in the screened Coulomb interaction W. This is achieved by solving the Bethe-Salp