ﻻ يوجد ملخص باللغة العربية
We compare analytical computations with numerical simulations for dark-matter clustering, in general relativity and in the normal branch of DGP gravity (nDGP). Our analytical frameword is the Effective Field Theory of Large-Scale Structure (EFTofLSS), which we use to compute the one-loop dark-matter power spectrum, including the resummation of infrared bulk displacement effects. We compare this to a set of 20 COLA simulations at redshifts $z = 0$, $z=0.5$, and $z =1$, and fit the free parameter of the EFTofLSS, called the speed of sound, in both $Lambda$CDM and nDGP at each redshift. At one-loop at $z = 0$, the reach of the EFTofLSS is $k_{rm reach}approx 0.14 , h { rm Mpc^{-1}}$ for both $Lambda$CDM and nDGP. Along the way, we compare two different infrared resummation schemes and two different treatments of the time dependence of the perturbative expansion, concluding that they agree to approximately $1%$ over the scales of interest. Finally, we use the ratio of the COLA power spectra to make a precision measurement of the difference between the speeds of sound in $Lambda$CDM and nDGP, and verify that this is proportional to the modification of the linear coupling constant of the Poisson equation.
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Lar
An accurate theoretical template for the galaxy power spectrum is a key for the success of ongoing and future spectroscopic surveys. We examine to what extent the Effective Field Theory of Large Scale Structure is able to provide such a template and
We present constraints on Horndeski gravity from a combined analysis of cosmic shear, galaxy-galaxy lensing and galaxy clustering from $450,mathrm{deg}^2$ of the Kilo-Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. The Horndeski
The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a formalism that allows us to predict the clustering of Cosmological Large-Scale Structure in the mildly non-linear regime in an accurate and reliable way. After validating our techniq
The precision of the cosmological data allows us to accurately approximate the predictions for cosmological observables by Taylor expanding up to a low order the dependence on the cosmological parameters around a reference cosmology. By applying this