ﻻ يوجد ملخص باللغة العربية
Coronal cavities have previously been observed associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet (EUV). The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in non-thermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blue-shifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows which resulted in the eruption of an under-dense filamentary flux rope.
Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and 3D geometry diagnostics. We report the first observations by the Interface Region Imaging Spec
We present a detailed three-dimensional (3D) view of a prominence eruption, coronal loop expansion, and coronal mass ejections (CMEs) associated with an M4.4 flare that occurred on 2011 March 8 in the active region NOAA 11165. Full-disk H$alpha$ imag
We studied the dynamics of the solar atmosphere in the region of a large quiet-Sun filament, which erupted on 21 October 2010. The filament eruption started at its northern end and disappeared from the H$alpha$ line-core filtergrams line within a few
Understanding elemental abundance variations in the solar corona provides an insight into how matter and energy flow from the chromosphere into the heliosphere. Observed variations depend on the first ionization potential (FIP) of the main elements o
The full 3-D vector magnetic field of a solar filament prior to eruption is presented. The filament was observed with the Facility Infrared Spectropolarimeter at the Dunn Solar Telescope in the chromospheric He i line at 10830 {AA} on May 29 and 30,