ترغب بنشر مسار تعليمي؟ اضغط هنا

Human Action Adverb Recognition: ADHA Dataset and A Three-Stream Hybrid Model

85   0   0.0 ( 0 )
 نشر من قبل Cewu Lu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the first benchmark for a new problem --- recognizing human action adverbs (HAA): Adverbs Describing Human Actions (ADHA). This is the first step for computer vision to change over from pattern recognition to real AI. We demonstrate some key features of ADHA: a semantically complete set of adverbs describing human actions, a set of common, describable human actions, and an exhaustive labeling of simultaneously emerging actions in each video. We commit an in-depth analysis on the implementation of current effective models in action recognition and image captioning on adverb recognition, and the results show that such methods are unsatisfactory. Moreover, we propose a novel three-stream hybrid model to deal the HAA problem, which achieves a better result.



قيم البحث

اقرأ أيضاً

Learning the spatial-temporal representation of motion information is crucial to human action recognition. Nevertheless, most of the existing features or descriptors cannot capture motion information effectively, especially for long-term motion. To a ddress this problem, this paper proposes a long-term motion descriptor called sequential Deep Trajectory Descriptor (sDTD). Specifically, we project dense trajectories into two-dimensional planes, and subsequently a CNN-RNN network is employed to learn an effective representation for long-term motion. Unlike the popular two-stream ConvNets, the sDTD stream is introduced into a three-stream framework so as to identify actions from a video sequence. Consequently, this three-stream framework can simultaneously capture static spatial features, short-term motion and long-term motion in the video. Extensive experiments were conducted on three challenging datasets: KTH, HMDB51 and UCF101. Experimental results show that our method achieves state-of-the-art performance on the KTH and UCF101 datasets, and is comparable to the state-of-the-art methods on the HMDB51 dataset.
Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant p rogress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for this task, and are limited in the way they fuse the temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets demonstrating that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.
67 - Dong Cao , Lisha Xu 2019
Pedestrian action recognition and intention prediction is one of the core issues in the field of autonomous driving. In this research field, action recognition is one of the key technologies. A large number of scholars have done a lot of work to im-p rove the accuracy of the algorithm for the task. However, there are relatively few studies and improvements in the computational complexity of algorithms and sys-tem real-time. In the autonomous driving application scenario, the real-time per-formance and ultra-low latency of the algorithm are extremely important evalua-tion indicators, which are directly related to the availability and safety of the au-tonomous driving system. To this end, we construct a bypass enhanced RGB flow model, which combines the previous two-branch algorithm to extract RGB feature information and optical flow feature information respectively. In the train-ing phase, the two branches are merged by distillation method, and the bypass enhancement is combined in the inference phase to ensure accuracy. The real-time behavior of the behavior recognition algorithm is significantly improved on the premise that the accuracy does not decrease. Experiments confirm the superiority and effectiveness of our algorithm.
Analyzing videos of human actions involves understanding the temporal relationships among video frames. State-of-the-art action recognition approaches rely on traditional optical flow estimation methods to pre-compute motion information for CNNs. Suc h a two-stage approach is computationally expensive, storage demanding, and not end-to-end trainable. In this paper, we present a novel CNN architecture that implicitly captures motion information between adjacent frames. We name our approach hidden two-stream CNNs because it only takes raw video frames as input and directly predicts action classes without explicitly computing optical flow. Our end-to-end approach is 10x faster than its two-stage baseline. Experimental results on four challenging action recognition datasets: UCF101, HMDB51, THUMOS14 and ActivityNet v1.2 show that our approach significantly outperforms the previous best real-time approaches.
75 - Dong Cao , Lisha Xu , 2019
Action recognition is an important research topic in computer vision. It is the basic work for visual understanding and has been applied in many fields. Since human actions can vary in different environments, it is difficult to infer actions in compl etely different states with a same structural model. For this case, we propose a Cross-Enhancement Transform Two-Stream 3D ConvNets algorithm, which considers the action distribution characteristics on the specific dataset. As a teaching model, stream with better performance in both streams is expected to assist in training another stream. In this way, the enhanced-trained stream and teacher stream are combined to infer actions. We implement experiments on the video datasets UCF-101, HMDB-51, and Kinetics-400, and the results confirm the effectiveness of our algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا