ﻻ يوجد ملخص باللغة العربية
Early design artifacts of embedded systems, such as architectural models, represent convenient abstractions for reasoning about a systems structure and functionality. One such example is the Electronic Architecture and Software Tools-Architecture Description Language (EAST-ADL), a domain-specific architectural language that targets the automotive industry. EAST-ADL is used to represent both hardware and software elements, as well as related extra-functional information (e.g., timing properties, triggering information, resource consumption). Testing architectural models is an important activity in engineering large-scale industrial systems, which sparks a growing research interest. The main contributions of this paper are: (i) an approach for creating energy-related mutants for EAST-ADL architectural models, (ii) a method for overcoming the equivalent mutant problem (i.e., the problem of finding a test case which can distinguish the observable behavior of a mutant from the original one), (iii) a test generation approach based on UPPAAL Statistical Model Checker (SMC), and (iv) a test selection criteria based on mutation analysis using our MATS tool.
In the field of mutation analysis, mutation is the systematic generation of mutated programs (i.e., mutants) from an original program. The concept of mutation has been widely applied to various testing problems, including test set selection, fault lo
Mutation testing is used to evaluate the effectiveness of test suites. In recent years, a promising variation called extreme mutation testing emerged that is computationally less expensive. It identifies methods where their functionality can be entir
A new breed of web application, dubbed AJAX, is emerging in response to a limited degree of interactivity in large-grain stateless Web interactions. At the heart of this new approach lies a single page interaction model that facilitates rich interact
Deep learning (DL) defines a new data-driven programming paradigm where the internal system logic is largely shaped by the training data. The standard way of evaluating DL models is to examine their performance on a test dataset. The quality of the t
Mutation testing is a well-established technique for assessing a test suites quality by injecting artificial faults into production code. In recent years, mutation testing has been extended to machine learning (ML) systems, and deep learning (DL) in