ﻻ يوجد ملخص باللغة العربية
We address the shot noise in the tunneling current through a localized spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Buttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights to noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.
The adiabatic transport properties of U(1) invariant systems are determined by the dependence of the ground state energy on the twisted boundary condition. We examine a one-dimensional tight-binding model in the presence of a single defect and find t
We study shot noise in tunneling current through a double quantum dot connected to two electric leads. We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics. The approach based on the
We analyze the equilibrium and non-equilibrium frequency-dependent spin current noise and spin conductance through a quantum dot in the local moment regime. Spin current correlations are shown to behave markedly differently from charge correlations:
Magnetic molecules and nanomagnets can be used to influence the electronic transport in mesoscopic junction. In a magnetic field the precessional motion leads to resonances in the dc- and ac-transport properties of a nanocontact, in which the electro
It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the