ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric engineering on flops of length two

110   0   0.0 ( 0 )
 نشر من قبل Marco Fazzi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Type IIA on the conifold is a prototype example for engineering QED with one charged hypermultiplet. The geometry admits a flop of length one. In this paper, we study the next generation of geometric engineering on singular geometries, namely flops of length two such as Laufers example, which we affectionately think of as the $it{conifold 2.0}$. Type IIA on the latter geometry gives QED with higher-charge states. In type IIB, even a single D3-probe gives rise to a nonabelian quiver gauge theory. We study this class of geometries explicitly by leveraging their quiver description, showing how to parametrize the exceptional curve, how to see the flop transition, and how to find the noncompact divisors intersecting the curve. With a view towards F-theory applications, we show how these divisors contribute to the enhancement of the Mordell-Weil group of the local elliptic fibration defined by Laufers example.



قيم البحث

اقرأ أيضاً

BPS quivers for N=2 SU(N) gauge theories are derived via geometric engineering from derived categories of toric Calabi-Yau threefolds. While the outcome is in agreement of previous low energy constructions, the geometric approach leads to several new results. An absence of walls conjecture is formulated for all values of N, relating the field theory BPS spectrum to large radius D-brane bound states. Supporting evidence is presented as explicit computations of BPS degeneracies in some examples. These computations also prove the existence of BPS states of arbitrarily high spin and infinitely many marginal stability walls at weak coupling. Moreover, framed quiver models for framed BPS states are naturally derived from this formalism, as well as a mathematical formulation of framed and unframed BPS degeneracies in terms of motivic and cohomological Donaldson-Thomas invariants. We verify the conjectured absence of BPS states with exotic SU(2)_R quantum numbers using motivic DT invariants. This application is based in particular on a complete recursive algorithm which determine the unframed BPS spectrum at any point on the Coulomb branch in terms of noncommutative Donaldson-Thomas invariants for framed quiver representations.
142 - Roman Bezrukavnikov 2012
The article is a contribution to the local theory of geometric Langlands correspondence. The main result is a categorification of the isomorphism between the (extended) affine Hecke algebra, thought of as an algebra of Iwahori bi-invariant functions on a semi-simple group over a local non-Archimedian field, and Grothendieck group of equivariant coherent sheaves on Steinberg variety of the Langlands dual group; this isomorphism due to Kazhdan--Lusztig and Ginzburg is a key step in the proof of tamely ramified local Langlands conjectures. The paper is a continuation of an earlier joint work with S. Arkhipov, it relies on technical material developed in a paper with Z. Yun.
We construct non-geometric compactifications by using the F-theory dual of the heterotic string compactified on a two-torus, together with a close connection between Siegel modular forms of genus two and the equations of certain K3 surfaces. The modu lar group mixes together the Kahler, complex structure, and Wilson line moduli of the torus yielding weakly coupled heterotic string compactifications which have no large radius interpretation.
We discuss the symplectic topology of the Stein manifolds obtained by plumbing two 3-dimensional spheres along a circle. These spaces are related, at a derived level and working in a characteristic determined by the specific geometry, to local threef olds which contain two floppable $(-1,-1)$-curves meeting at a point. Using contraction algebras we classify spherical objects on the B-side, and derive topological consequences including a complete description of the homology classes realised by graded exact Lagrangians.
The extraction of scattering parameters from Euclidean simulations of a Yukawa model in a finite volume with periodic boundary conditions is analyzed both in non relativistic quantum mechanics and in quantum field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا