ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum-space and real-space Berry curvatures in Mn$_{3}$Sn

171   0   0.0 ( 0 )
 نشر من قبل Zengwei Zhu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mn$_{3}$X (X= Sn, Ge) are noncollinear antiferromagnets hosting a large anomalous Hall effect (AHE). Weyl nodes in the electronic dispersions are believed to cause this AHE, but their locus in the momentum space is yet to be pinned down. We present a detailed study of the Hall conductivity tensor and magnetization in Mn$_{3}$Sn crystals and find that in the presence of a moderate magnetic field, spin texture sets the orientation of the $k$-space Berry curvature with no detectable in-plane anisotropy due to the $Z_6$ symmetry of the underlying lattice. We quantify the energy cost of domain nucleation and show that the multidomain regime is restricted to a narrow field window. Comparing the field dependence of AHE and magnetization, we find that there is a distinct component in the AHE which does not scale with magnetization when the domain walls are erected. This so-called `topological Hall effect provides indirect evidence for a non-coplanar spin components and real-space Berry curvature in domain walls.



قيم البحث

اقرأ أيضاً

Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl crystals exhibit Ber ry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the degeneracy point of the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic Weyl semimetal. We have probed the orbital and spin angular momentum (OAM and SAM) of the Weyl-fermion states by angle-resolved photoemission spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. Supported by first-principles calculations, our measurements image characteristics of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results experimentally visualize the non-trivial momentum-space topology in a Weyl semimetal, promising to have profound implications for the study of quantum-geometric effects in solids.
110 - C. Franz , F. Freimuth , A. Bauer 2014
We report an experimental and computational study of the Hall effect in Mn$_{rm 1-x}$Fe$_{rm x}$Si, as complemented by measurements in Mn$_{rm 1-x}$Co$_{rm x}$Si, when helimagnetic order is suppressed under substitutional doping. For small $x$ the an omalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of ten. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification, that while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.
We present a study of electric, thermal and thermoelectric response in noncollinear antiferromagnet Mn$_{3}$Sn, which hosts a large Anomalous Hall Effect (AHE). Berry curvature generates off-diagonal thermal(Righi-Leduc) and thermoelectric(Nernst) si gnals, which are detectable at room temperature and invertible with a small magnetic field. The thermal and electrical Hall conductivities respect the Wiedemann-Franz law, implying that the transverse currents induced by Berry curvature are carried by Fermi surface quasi-particles. In contrast to conventional ferromagnets, the anomalous Lorenz number remains close to the Sommerfeld number over the whole temperature range of study, excluding any contribution by inelastic scattering and pointing to Berry curvature as the unique source of AHE. The anomalous off-diagonal thermo-electric and Hall conductivities are strongly temperature-dependent and their ratio is close to k$_{B}$/e.
We examine quadratic surfaces in 3-space that are tangent to nine given figures. These figures can be points, lines, planes or quadrics. The numbers of tangent quadrics were determined by Hermann Schubert in 1879. We study the associated systems of p olynomial equations, also in the space of complete quadrics, and we solve them using certified numerical methods. Our aim is to show that Schuberts problems are fully real.
Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-s pace mapping of selected transitions between p and d states on the {AA}ngstrom scale in bulk rutile (TiO2) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا