ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthogonally additive polynomials on the algebras of approximable operators

85   0   0.0 ( 0 )
 نشر من قبل Jeronimo Alaminos
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ and $Y$ be Banach spaces, let $mathcal{A}(X)$ stands for the algebra of approximable operators on $X$, and let $Pcolonmathcal{A}(X)to Y$ be an orthogonally additive, continuous $n$-homogeneous polynomial. If $X^*$ has the bounded approximation property, then we show that there exists a unique continuous linear map $Phicolonmathcal{A}(X)to Y$ such that $P(T)=Phi(T^n)$ for each $Tinmathcal{A}(X)$.



قيم البحث

اقرأ أيضاً

Let $G$ be a compact group, let $X$ be a Banach space, and let $Pcolon L^1(G)to X$ be an orthogonally additive, continuous $n$-homogeneous polynomial. Then we show that there exists a unique continuous linear map $Phicolon L^1(G)to X$ such that $P(f) =Phi bigl(faststackrel{n}{cdots}ast f bigr)$ for each $fin L^1(G)$. We also seek analogues of this result about $L^1(G)$ for various other convolution algebras, including $L^p(G)$, for $1< pleinfty$, and $C(G)$.
178 - Ariel Blanco 2008
We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening known results and developing new techniques to determine whether or not a given Banach space carries an amenable algebra of approximable operators. Using these techniques, we are able to show, among other things, the non-amenability of the algebra of approximable operators on Tsirelsons space.
Let $mathcal{M}$ be a von Neumann algebra with a normal semifinite faithful trace $tau$. We prove that every continuous $m$-homogeneous polynomial $P$ from $L^p(mathcal{M},tau)$, with $0<p<infty$, into each topological linear space $X$ with the prope rty that $P(x+y)=P(x)+P(y)$ whenever $x$ and $y$ are mutually orthogonal positive elements of $L^p(mathcal{M},tau)$ can be represented in the form $P(x)=Phi(x^m)$ $(xin L^p(mathcal{M},tau))$ for some continuous linear map $Phicolon L^{p/m}(mathcal{M},tau)to X$.
153 - Enrico Boasso 2016
Given a complex Banach space $X$ and a joint spectrum for complex solvable finite dimensional Lie algebras of operators defined on $X$, we extend this joint spectrum to quasi-solvable Lie algebras of operators, and we prove the main spectral properti es of the extended joint spectrum. We also show that this construction is uniquely determined by the original joint spectrum.
Starting with an additive process $(Y_t)_{tgeq0}$, it is in certain cases possible to construct an adjoint process $(X_t)_{tgeq0}$ which is itself additive. Moreover, assuming that the transition densities of $(Y_t)_{tgeq0}$ are controlled by a natur al pair of metrics $mathrm{d}_{psi,t}$ and $delta_{psi,t}$, we can prove that the transition densities of $(X_t)_{tgeq0}$ are controlled by the metrics $delta_{psi,1/t}$ replacing $mathrm{d}_{psi,t}$ and $mathrm{d}_{psi,1/t}$ replacing $delta_{psi,t}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا