ﻻ يوجد ملخص باللغة العربية
In this note, we consider radio characteristics of three proton flares that caused discrete enhancements of solar energetic particles (SEPs) near Earth. The analysis confirmed that the flux density and frequency spectrum of microwave bursts, although the latter are generated by electrons propagating to the photosphere, reflect the number and energy spectrum of accelerated particles, including the 10-100 MeV protons coming to Earth.
We further study the relations between parameters of bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 25 years, on the one hand, and solar proton events, on the other hand (Grechnev et al. in Publ. Astron. Soc. Japan 65, S4, 2013
We report the first science results from the newly completed Expanded Owens Valley Solar Array (EOVSA), which obtained excellent microwave imaging spectroscopy observations of SOL2017-09-10, a classic partially-occulted solar limb flare associated wi
In this multi-instrument paper, we search for evidence of sustained magnetic reconnection far beyond the impulsive phase of the X8.2-class solar flare on 2017 September 10. Using Hinode/EIS, CoMP, SDO/AIA, K-Cor, Hinode/XRT, RHESSI, and IRIS, we stud
The SEDA-FIB is a detector designed to measure solar neutrons. This solar neutron detector was operated onboard the ISS on July 16, 2009 and March 31, 2018. Eighteen large solar flares were later observed by the GOES satellite in solar active region
We study the magnetic field evolution in the active region (AR) 12673 that produced the largest solar flare in the past decade on 2017 September 6. Fast flux emergence is one of the most prominent features of this AR. We calculate the magnetic helici