ﻻ يوجد ملخص باللغة العربية
We give a classification of compact solitons for the pluriclosed flow on complex surfaces. First, by exploiting results from the Kodaira classification of surfaces, we show that the complex surface underlying a soliton must be Kahler except for the possibility of steady solitons on minimal Hopf surfaces. Then, we construct steady solitons on all class $1$ Hopf surfaces by exploiting a natural symmetry ansatz.
We recall fundamental aspects of the pluriclosed flow equation and survey various existence and convergence results, and the various analytic techniques used to establish them. Building on this, we formulate a precise conjectural description of the l
We give a complete description of the global existence and convergence for the Ricci-Yang-Mills flow on $T^k$ bundles over Riemann surfaces. These results equivalently describe solutions to generalized Ricci flow and pluriclosed flow with symmetry.
In prior work the authors introduced a parabolic flow of pluriclosed metrics. Here we give improved regularity results for solutions to this equation. Furthermore, we exhibit this equation as the gradient flow of the lowest eigenvalue of a certain Sc
In this note, we prove the existence of weak solutions of the Chern-Ricci flow through blow downs of exceptional curves, as well as backwards smooth convergence away from the exceptional curves on compact complex surfaces. The smoothing property for
Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natural extension of Calabi-Yau metrics to the setting of complex, non-Kahler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of