ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing many-body approaches against the helium atom exact solution

264   0   0.0 ( 0 )
 نشر من قبل Valerio Olevano
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over time, many different theories and approaches have been developed to tackle the many-body problem in quantum chemistry, condensed-matter physics, and nuclear physics. Here we use the helium atom, a real system rather than a model, and we use the exact solution of its Schrodinger equation as a benchmark for comparison between methods. We present new results beyond the random-phase approximation (RPA) from a renormalized RPA (r-RPA) in the framework of the self-consistent RPA (SCRPA) originally developed in nuclear physics, and compare them with various other approaches like configuration interaction (CI), quantum Monte Carlo (QMC), time-dependent density-functional theory (TDDFT), and the Bethe-Salpeter equation on top of the GW approximation. Most of the calculations are consistently done on the same footing, e.g. using the same basis set, in an effort for a most faithful comparison between methods.



قيم البحث

اقرأ أيضاً

Helium atom is the simplest many-body electronic system provided by nature. The exact solution to the Schrodinger equation is known for helium ground and excited states, and represents a workbench for any many-body methodology. Here, we check the ab initio many-body GW approximation and Bethe-Salpeter equation (BSE) against the exact solution for helium. Starting from Hartree-Fock, we show that GW and BSE yield impressively accurate results on excitation energies and oscillator strength, systematically improving time-dependent Hartree-Fock. These findings suggest that the accuracy of BSE and GW approximations is not significantly limited by self-interaction and self-screening problems even in this few electron limit. We further discuss our results in comparison to those obtained by time-dependent density-functional theory.
A recent experiment in the Rydberg atom chain observed unusual oscillatory quench dynamics with a charge density wave initial state, and theoretical works identified a set of many-body scar states showing nonthermal behavior in the Hamiltonian as pot entially responsible for the atypical dynamics. In the same nonintegrable Hamiltonian, we discover several eigenstates at emph{infinite temperature} that can be represented exactly as matrix product states with finite bond dimension, for both periodic boundary conditions (two exact $E = 0$ states) and open boundary conditions (two $E = 0$ states and one each $E = pm sqrt{2}$). This discovery explicitly demonstrates violation of strong eigenstate thermalization hypothesis in this model and uncovers exact quantum many-body scar states. These states show signatures of translational symmetry breaking with period-2 bond-centered pattern, despite being in one dimension at infinite temperature. We show that the nearby many-body scar states can be well approximated as quasiparticle excitations on top of our exact $E = 0$ scar states, and propose a quasiparticle explanation of the strong oscillations observed in experiments.
We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localisation transition. The classical model is defined on a graph in the Fock space of a disordered, interacting qua ntum spin chain, using a convenient choice of basis. Edges of the graph represent matrix elements of the spin Hamiltonian between pairs of basis states that are expected to hybridise strongly. At weak disorder, all nodes are connected, forming a single cluster. Many separate clusters appear above a critical disorder strength, each typically having a size that is exponentially large in the number of spins but a vanishing fraction of the Fock-space dimension. We formulate a transfer matrix approach that yields an exact value $ u=2$ for the localisation length exponent, and also use complete enumeration of clusters to study the transition numerically in finite-sized systems.
We introduce an exact numerical technique to solve the nuclear pairing Hamiltonian and to determine properties such as the even-odd mass differences or spectral functions for any element within the periodic table for any number of nuclear shells. In particular, we show that the nucleus is a system with small entanglement and can thus be described efficiently using a one-dimensional tensor network (matrix-product state) despite the presence of long-range interactions. Our approach is numerically cheap and accurate to essentially machine precision, even for large nuclei. We apply this framework to compute the even-odd mass differences of all known lead isotopes from $^{178}$Pb to $^{220}$Pb in the very large configuration space of 13 shells between the neutron magic numbers 82 and 184 (i.e., two major shells) and find good agreement with the experiment. To go beyond the ground state, we calculate the two-neutron removal spectral function of $^{210}$Pb which relates to a two-neutron pickup experiment that probes neutron-pair excitations across the gap of $^{208}$Pb. Finally, we discuss the capabilities of our method to treat pairing with non-zero angular momentum. This is numerically more demanding, but one can still determine the lowest excited states in the full configuration space of one major shell with modest effort, which we demonstrate for the $N=126$, $Zgeq 82$ isotones.
We review the theory and applications of complex stochastic quantization to the quantum many-body problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some cases altogether solve the sign problem, incl uding the classic reweighting method, alternative Hubbard-Stratonovich transformations, dual variables (for bosons and fermions), Majorana fermions, density-of-states methods, imaginary asymmetry approaches, and Lefschetz thimbles. We discuss some aspects of the mathematical underpinnings of conventional stochastic quantization, provide a few pedagogical examples, and summarize open challenges and practical solutions for the complex case. Finally, we review the recent applications of complex Langevin to quantum field theory in relativistic and nonrelativistic quantum matter, with an emphasis on the nonrelativistic case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا