ترغب بنشر مسار تعليمي؟ اضغط هنا

On the crossroads of enumerative geometry and geometric representation theory

120   0   0.0 ( 0 )
 نشر من قبل Andrei Okounkov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrei Okounkov




اسأل ChatGPT حول البحث

The subjects in the title are interwoven in many different and very deep ways. I recently wrote several expository accounts [64-66] that reflect a certain range of developments, but even in their totality they cannot be taken as a comprehensive survey. In the format of a 30-page contribution aimed at a general mathematical audience, I have decided to illustrate some of the basic ideas in one very interesting example - that of HilbpC2, nq, hoping to spark the curiosity of colleagues in those numerous fields of study where one should expect applications.



قيم البحث

اقرأ أيضاً

156 - Andrei Okounkov 2017
This is an introduction to: (1) the enumerative geometry of rational curves in equivariant symplectic resolutions, and (2) its relation to the structures of geometric representation theory. Written for the 2015 Algebraic Geometry Summer Institute.
The polynomial ring $B_r:=mathbb{Q}[e_1,ldots,e_r]$ in $r$ indeterminates is a representation of the Lie algebra of all the endomorphism of $mathbb{Q}[X]$ vanishing at powers $X^j$ for all but finitely many $j$. We determine a $B_r$-valued formal pow er series in $r+2$ indeterminates which encode the images of all the basis elements of $B_r$ under the action of the generating function of elementary endomorphisms of $mathbb{Q}[X]$, which we call the structural series of the representation. The obtained expression implies (and improves) a formula by Gatto & Salehyan, which only computes, for one chosen basis element, the generating function of its images. For sake of completeness we construct in the last section the $B=B_infty$-valued structural formal power series which consists in the evaluation of the vertex operator describing the bosonic representation of $gl_{infty}(mathbb{Q})$ against the generating function of the standard Schur basis of $B$. This provide an alternative description of the bosonic representation of $gl_{infty}$ due to Date, Jimbo, Kashiwara and Miwa which does not involve explicitly exponential of differential operators.
Let G be a simple complex algebraic group. We prove that the irregularity of the adjoint connection of an irregular flat G-bundle on the formal punctured disk is always greater than or equal to the rank of G. This can be considered as a geometric ana logue of a conjecture of Gross and Reeder. We will also show that the irregular connections with minimum adjoint irregularity are precisely the (formal) Frenkel-Gross connections.
We investigate the irreducibility of the nilpotent Slodowy slices that appear as the associated variety of W-algebras. Furthermore, we provide new examples of vertex algebras whose associated variety has finitely many symplectic leaves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا