ترغب بنشر مسار تعليمي؟ اضغط هنا

A 3D-printed alkali metal dispenser

67   0   0.0 ( 0 )
 نشر من قبل Eric Norrgard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The sources outgassing rate is measured to be $5 ,(2)cdot 10^{-7}$,$rm{Pa}~ rm{L}~ rm{s}^{-1}$ at a temperature $T=330,^circ$C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads $approx 10^7$ $^7$Li atoms in the trap in $approx 1$,s. The loaded source weighs 700,mg and is suitable for a number of deployable sensors based on cold atoms.



قيم البحث

اقرأ أيضاً

Nowadays is very common to find headlines in the media where it is stated that 3D printing is a technology called to change our lives in the near future. For many authors, we are living in times of a third industrial revolution. Howerver, we are curr ently in a stage of development where the use of 3D printing is advantageous over other manufacturing technologies only in rare scenarios. Fortunately, scientific research is one of them. Here we present the development of a set of opto-mechanical components that can be built easily using a 3D printer based on Fused Filament Fabrication (FFF) and parts that can be found on any hardware store. The components of the set presented here are highly customizable, low-cost, require a short time to be fabricated and offer a performance that compares favorably with respect to low-end commercial alternatives.
We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed alkali metal dispenser in < 10^-10 torr ultra-high vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing shroud held at < 0 C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background alkali atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly-switched, two-temperature thermal beam, and was used to load a MOT with 3 x 10^8 atoms.
We present an approach to increase the effective light-receiving area of superconducting nanowire single-photon detectors (SNSPD) by means of free-form microlenses that are printed in situ on top of the sensitive detector area using high-resolution m ulti-photon lithography. We demonstrate a detector based on a niobium-nitride (NbN) nanowire with a 4.5 $mathrm mu$m $times$ 4.5 $mathrm mu$m sensitive area, supplemented with a lens of 60 $mathrm mu$m diameter. For free-space illumination at a wavelength of 1550 nm, the lensed sensor has a 100-fold-increased effective collection area, which leads to strongly enhanced system detection efficiency without the need for long nanowires. Our approach can be readily applied to a wide range of sensor types and effectively overcomes the inherent design conflict between high counting speed due to short sensor reset time, high timing accuracy, and high fabrication yield on the one hand and high collection efficiency through large effective detection areas on the other hand.
Optical metasurfaces have been heralded as the platform to integrate multiple functionalities in a compact form-factor, potentially replacing bulky components. A central stepping stone towards realizing this promise is the demonstration of multifunct ionality under several constraints (e.g. at multiple incident wavelengths and/or angles) in a single device -- an achievement being hampered by design limitations inherent to single-layer planar geometries. Here, we propose a general framework for the inverse design of volumetric 3D metaoptics via topology optimization, showing that even few-wavelength thick devices can achieve high-efficiency multifunctionality. We embody our framework in multiple closely-spaced patterned layers of a low-index polymer. We experimentally demonstrate our approach with an inverse-designed 3d-printed light concentrator working at five different non-paraxial angles of incidence. Our framework paves the way towards realizing multifunctional ultra-compact 3D nanophotonic devices.
We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا