ﻻ يوجد ملخص باللغة العربية
Superconductors and semiconductors are crucial platforms in the field of quantum computing. They can be combined to hybrids, bringing together physical properties that enable the discovery of new emergent phenomena and provide novel strategies for quantum control. The involved semiconductor materials, however, suffer from disorder, hyperfine interactions or lack of planar technology. Here we realise an approach that overcomes these issues altogether and integrate gate-defined quantum dots and superconductivity into a material system with strong spin-orbit coupling. In our germanium heterostructures, heavy holes with mobilities exceeding 500,000 cm$^2$/Vs are confined in shallow quantum wells that are directly contacted by annealed aluminium leads. We demonstrate gate-tunable superconductivity and find a characteristic voltage $I_cR_n$ that exceeds 10 $mu$V. Germanium therefore has great promise for fast and coherent quantum hardware and, being compatible with standard manufacturing, could become a leading material in the quantum revolution.
Quantum confinenement and manipulation of charge carriers are critical for achieving devices practical for quantum technologies. The interplay between electron spin and valley, as well as the possibility to address their quantum states electrically a
We consider electrostatically coupled quantum dots in topological insulators, otherwise confined and gapped by a magnetic texture. By numerically solving the (2+1) Dirac equation for the wave packet dynamics, we extract the energy spectrum of the cou
We theoretically investigate the properties of holes in a Si$_{x}$Ge$_{1-x}$/Ge/ Si$_{x}$Ge$_{1-x}$ quantum well in a perpendicular magnetic field that make them advantageous as qubits, including a large ($>$100~meV) intrinsic splitting between the l
We report on charge detection in electrostatically-defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high quality quantum do
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a