ﻻ يوجد ملخص باللغة العربية
We present an event-triggered control strategy for stabilizing a scalar, continuous-time, time-invariant, linear system over a digital communication channel having bounded delay, and in the presence of bounded system disturbance. We propose an encoding-decoding scheme, and determine lower bounds on the packet size and on the information transmission rate which are sufficient for stabilization. We show that for small values of the delay, the timing information implicit in the triggering events is enough to stabilize the system with any positive rate. In contrast, when the delay increases beyond a critical threshold, the timing information alone is not enough to stabilize the system and the transmission rate begins to increase. Finally, large values of the delay require transmission rates higher than what prescribed by the classic data-rate theorem. The results are numerically validated using a linearized model of an inverted pendulum.
In the context of event-triggered control, the timing of the triggering events carries information about the state of the system that can be used for stabilization. At each triggering event, not only can information be transmitted by the message cont
In the same way that subsequent pauses in spoken language are used to convey information, it is also possible to transmit information in communication networks not only by message content, but also with its timing. This paper presents an event-trigge
Stochastic stability for centralized time-varying Kalman filtering over a wireles ssensor network with correlated fading channels is studied. On their route to the gateway, sensor packets, possibly aggregated with measurements from several nodes, may
We consider remote state estimation of multiple discrete-time linear time-invariant (LTI) systems over multiple wireless time-varying communication channels. Each system state is measured by a sensor, and the measurements from sensors are sent to a r
We consider the optimal control of linear systems over wireless MIMO fading channels, where the MIMO wireless fading and random access of the remote controller may cause intermittent controllability or uncontrollability of the closed-loop control sys