ﻻ يوجد ملخص باللغة العربية
In this paper we study the scaling relations for the triggering of the fast, or ideal, tearing instability starting from equilibrium configurations relevant to astrophysical as well as laboratory plasmas that differ from the simple Harris current sheet configuration. We present the linear tearing instability analysis for equilibrium magnetic fields which a) go to zero at the boundary of the domain and b) contain a double current sheet system (the latter previously studied as a cartesian proxy for the m=1 kink mode in cylindrical plasmas). More generally, we discuss the critical aspect ratio scalings at which the growth rates become independent of the Lundquist number $S$, in terms of the dependence of the $Delta$ parameter on the wavenumber $k$ of unstable modes. The scaling $Delta(k)$ with $k$ at small $k$ is found to categorize different equilibria broadly: the critical aspect ratios may be even smaller than $L/a sim S^{alpha}$ with $alpha=1/3$ originally found for the Harris current sheet, but there exists a general lower bound $alphage1/4$.
Magnetic reconnection may be the fundamental process allowing energy stored in magnetic fields to be released abruptly, solar flares and coronal mass ejection (CME) being archetypal natural plasma examples. Magnetic reconnection is much too slow a pr
This paper studies the growth rate of reconnection instabilities in thin current sheets in the presence of both resistivity and viscosity. In a previous paper, Pucci and Velli (2014), it was argued that at sufficiently high Lundquist number S it is i
We present the first study of the formation and dissipation of current sheets at electron scales in a wave-driven, weakly collisional, 3D kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionle
We study, by means of MHD simulations, the onset and evolution of fast reconnection via the ideal tearing mode within a collapsing current sheet at high Lundquist numbers ($Sgg10^4$). We first confirm that as the collapse proceeds, fast reconnection
A 2D linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of Reduced MHD. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The p