ترغب بنشر مسار تعليمي؟ اضغط هنا

ASASSN-15no: The Supernova that plays hide-and-seek

122   0   0.0 ( 0 )
 نشر من قبل Stefano Benetti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of our follow-up campaign of the peculiar supernova ASASSN-15no, based on optical data covering ~300 days of its evolution. Initially the spectra show a pure blackbody continuum. After few days, the HeI 5876 A transition appears with a P-Cygni profile and an expansion velocity of about 8700 km/s. Fifty days after maximum, the spectrum shows signs typically seen in interacting supernovae. A broad (FWHM~8000 km/s) Halpha becomes more prominent with time until ~150 days after maximum and quickly declines later on. At these phases Halpha starts to show an intermediate component, which together with the blue pseudo-continuum are clues that the ejecta begin to interact with the CSM. The spectra at the latest phases look very similar to the nebular spectra of stripped-envelope SNe. The early part (the first 40 days after maximum) of the bolometric curve, which peaks at a luminosity intermediate between normal and superluminous supernovae, is well reproduced by a model in which the energy budget is essentially coming from ejecta recombination and 56Ni decay. From the model we infer a mass of the ejecta Mej = 2.6 Msun; an initial radius of the photosphere R0 = 2.1 x 10^14 cm; and an explosion energy Eexpl = 0.8 x 10^51 erg. A possible scenario involves a massive and extended H-poor shell lost by the progenitor star a few years before explosion. The shell is hit, heated and accelerated by the supernova ejecta. The accelerated shell+ejecta rapidly dilutes, unveiling the unperturbed supernova spectrum below. The outer ejecta start to interact with a H-poor external CSM lost by the progenitor system about 9 -- 90 years before the explosion.



قيم البحث

اقرأ أيضاً

We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a variety of obstacles in the environment for the prey to hide behind, and we only give th e agents partial observations of their environment using an egocentric perspective. Although we train the model to play this game from scratch, experiments and visualizations suggest that the agent learns to predict its own visibility in the environment. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, effect the learned policy. Our results suggest that, although agent weaknesses make the learning problem more challenging, they also cause more useful features to be learned. Our project website is available at: http://www.cs.columbia.edu/ ~bchen/visualhideseek/.
We use $sim$83,000 star-forming galaxies at $0.04<z<0.3$ from the Sloan Digital Sky Survey to study the so-called fundamental metallicity relation (FMR) and report on the disappearance of its anti-correlation between metallicity and star formation ra te (SFR) when using the new metallicity indicator recently proposed by Dopita et al. In this calibration, metallicity is primarily sensitive to the emission line ratio [NII]$lambda$6584 / [SII]$lambdalambda$6717, 6731 that is insensitive to dilution by pristine infalling gas that may drive the FMR anti-correlation with SFR. Therefore, we conclude that the apparent disappearance of the FMR (using this new metallicity indicator) does not rule out its existence.
115 - K. Sneppen 2004
Signaling pathways and networks determine the ability to communicate in systems ranging from living cells to human society. We investigate how the network structure constrains communication in social-, man-made and biological networks. We find that h uman networks of governance and collaboration are predictable on teat-a-teat level, reflecting well defined pathways, but globally inefficient. In contrast, the Internet tends to have better overall communication abilities, more alternative pathways, and is therefore more robust. Between these extremes the molecular network of Saccharomyces cerevisea is more similar to the simpler social systems, whereas the pattern of interactions in the more complex Drosophilia melanogaster, resembles the robust Internet.
Since the discovery of the transiting super-Earth CoRoT-7b, several investigations have yielded different results for the number and masses of planets present in the system, mainly owing to the stars high level of activity. We re-observed CoRoT-7 in January 2012 with both HARPS and CoRoT, so that we now have the benefit of simultaneous radial-velocity and photometric data. This allows us to use the off-transit variations in the stars light curve to estimate the radial-velocity variations induced by the suppression of convective blueshift and the flux blocked by starspots. To account for activity-related effects in the radial-velocities which do not have a photometric signature, we also include an additional activity term in the radial-velocity model, which we treat as a Gaussian process with the same covariance properties (and hence the same frequency structure) as the light curve. Our model was incorporated into a Monte Carlo Markov Chain in order to make a precise determination of the orbits of CoRoT-7b and CoRoT-7c. We measure the masses of planets b and c to be 4.73 +/- 0.95 Mearth and 13.56 +/- 1.08 Mearth, respectively. The density of CoRoT-7b is (6.61 +/- 1.72)(Rp/1.58 Rearth)^(-3) g.cm^(-3), which is compatible with a rocky composition. We search for evidence of an additional planet d, identified by previous authors with a period close to 9 days. We are not able to confirm the existence of a planet with this orbital period, which is close to the second harmonic of the stellar rotation at around 7.9 days. Using Bayesian model selection we find that a model with two planets plus activity-induced variations is most favoured.
Hydrogen-rich, core-collapse supernovae are typically divided into four classes: IIP, IIL, IIn, and IIb. In general, interaction with circumstellar material is only considered for Type IIn supernovae. However, recent hydrodynamic modeling of IIP and IIL supernovae requires circumstellar material to reproduce their early light curves. In this scenario, IIL supernovae experience large amounts of mass loss before exploding. We test this hypothesis on ASASSN-15oz, a Type IIL supernova. With extensive follow-up in the X- ray, UV, optical, IR, and radio we present our search for signs of interaction, and the mass-loss history indicated by their detection. We find evidence of short-lived intense mass-loss just prior to explosion from light curve modeling, amounting in 1.5 M$_{odot}$ of material within 1800 R$_{odot}$ of the progenitor. We also detect the supernova in the radio, indicating mass-loss rates of $10^{-6}-10^{-7}$ M$_{odot}$ yr$^{-1}$ prior to the extreme mass-loss period. Our failure to detect the supernova in the X-ray and the lack of narrow emission lines in the UV, optical, and NIR do not contradict this picture and place an upper limit on the mass-loss rate outside the extreme period of $<10^{-4}$ M$_{odot}$ yr$^{-1}$. This paper highlights the importance gathering comprehensive data on more Type II supernovae to enable detailed modeling of the progenitor and supernova which can elucidate their mass-loss histories and envelope structures and thus inform stellar evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا