ﻻ يوجد ملخص باللغة العربية
Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns timescales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer, show that it is clearly working and that it has advantages over the discrete approach i.e. it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.
In studies of dynamical systems, helium atoms scatter coherently from an ensemble of adsorbates as they diffuse on the surface. The results give information on the co-operative behaviour of interacting adsorbates and thus include the effects of both
In multi-electrode detectors, the motion of excess carriers generated by ionizing radiation induces charge pulses at the electrodes, whose intensities and polarities depend on the geometrical, electrostatic and carriers transport properties of the de
Recent progress in neutron spin-echo spectroscopy by means of longitudinal Modulation of IntEnsity with Zero Effort (MIEZE) is reviewed. Key technical characteristics are summarized which highlight that the parameter range accessible in momentum and
Knowledge of the intensity and phase profiles of spectral components in a coherent optical field is critical for a wide range of high-precision optical applications. One of these is interferometric gravitational wave detectors, which rely on such fie
An additional value of the Avogadro constant was obtained by counting the atoms in isotopically enriched Si spheres. With respect to the previous determination, the spheres were etched and repolished to eliminate metal contaminations and to improve t