ﻻ يوجد ملخص باللغة العربية
Motivated by questions in algebra and combinatorics we study two ideals associated to a simple graph G: --> the Lovasz-Saks-Schrijver ideal defining the d-dimensional orthogonal representations of the graph complementary to G and --> the determinantal ideal of the (d+1)-minors of a generic symmetric with 0s in positions prescribed by the graph G. In characteristic 0 these two ideals turns out to be closely related and algebraic properties such as being radical, prime or a complete intersection transfer from the Lovasz-Saks-Schrijver ideal to the determinantal ideal. For Lovasz-Saks-Schrijver ideals we link these properties to combinatorial properties of G and show that they always hold for d large enough. For specific classes of graph, such a forests, we can give a complete picture and classify the radical, prime and complete intersection Lovasz-Saks-Schrijver ideals.
Let $G$ be a simple graph on $n$ vertices. Let $L_G text{ and } mathcal{I}_G : $ denote the Lovasz-Saks-Schrijver(LSS) ideal and parity binomial edge ideal of $G$ in the polynomial ring $S = mathbb{K}[x_1,ldots, x_n, y_1, ldots, y_n] $ respectively.
We show that the ideal generated by maximal minors (i.e., $(k+1)$-minors) of a $(k+1) times n$ Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all Specht polynomials with shape $(n-k,1,...,1)$.
Let I be either the ideal of maximal minors or the ideal of 2-minors of a row graded or column graded matrix of linear forms L. In two previous papers we showed that I is a Cartwright-Sturmfels ideal, that is, the multigraded generic initial ideal gi
We show that a determinantal ideal generated by $t$-minors does not contain any nonzero polynomials with $t!/2$ or fewer terms. Geometrically this means that any nonzero polynomial vanishing on all matrices of rank at most $t-1$ has more than $t!/2$ terms.
Given any equigenerated monomial ideal $I$ with the property that the defining ideal $J$ of the fiber cone $ F(I)$ of $I$ is generated by quadratic binomials, we introduce a matrix such that the set of its binomial $2$-minors is a generating set of $