ﻻ يوجد ملخص باللغة العربية
The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behaviour of atoms coupled to a single electromagnetic mode. In this paper, we demonstrate a Dicke-model simulation using cavity-assisted Raman transitions in a configuration using counter-propagating laser beams. The observations indicate that motional effects should be included to fully account for the results and these results are contrasted with the experiments using single-beam and co-propagating configurations. A theoretical description is given that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular a model is given that highlights the influence of Doppler broadening on the observed thresholds.
Squeezing ensemble of spins provides a way to surpass the standard quantum limit (SQL) in quantum metrology and test the fundamental physics as well, and therefore attracts broad interest. Here we propose an experimentally accessible protocol to sque
We present two schemes for driving Raman transitions between the ground state hyperfine manifolds of a single atom trapped within a high-finesse optical cavity. In both schemes, the Raman coupling is generated by standing-wave fields inside the cavit
A new optical pumping scheme is presented that uses incoherent Raman transitions to prepare a trapped Cesium atom in a specific Zeeman state within the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme over existing optical pump
Two-level atoms interacting with a one mode cavity field at zero temperature have order parameters which reflect the presence of a quantum phase transition at a critical value of the atom-cavity coupling strength. Two popular examples are the number