ﻻ يوجد ملخص باللغة العربية
We introduce new families of combinatorial objects whose enumeration computes volumes of flow polytopes. These objects provide an interpretation, based on parking functions, of Baldoni and Vergnes generalization of a volume formula originally due to Lidskii. We recover known flow polytope volume formulas and prove new volume formulas for flow polytopes that were seemingly unapproachable. A highlight of our model is an elegant formula for the flow polytope of a graph we call the caracol graph. As by-products of our work, we uncover a new triangle of numbers that interpolates between Catalan numbers and the number of parking functions, we prove the log-concavity of rows of this triangle along with other sequences derived from volume computations, and we introduce a new Ehrhart-like polynomial for flow polytope volume and conjecture product formulas for the polytopes we consider.
We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian
In an earlier paper, the first two authors defined orientations on hypergraphs. Using this definition we provide an explicit bijection between acyclic orientations in hypergraphs and faces of hypergraphic polytopes. This allows us to obtain a geometr
Matching fields were introduced by Sturmfels and Zelevinsky to study certain Newton polytopes and more recently have been shown to give rise to toric degenerations of various families of varieties. Whenever a matching field gives rise to a toric dege
It is known that the coordinate ring of the Grassmannian has a cluster structure, which is induced from the combinatorial structure of a plabic graph. A plabic graph is a certain bipartite graph described on the disk, and there is a family of plabic
Suppose we choose $N$ points uniformly randomly from a convex body in $d$ dimensions. How large must $N$ be, asymptotically with respect to $d$, so that the convex hull of the points is nearly as large as the convex body itself? It was shown by Dyer-