ﻻ يوجد ملخص باللغة العربية
This paper derives and discusses the configuration-space Langevin equation describing a physically aging R-simple system and the corresponding Smoluchowski equation. Externally controlled thermodynamic variables like temperature, density, pressure enter the description via the single parameter ${T}_{rm s}/T$ in which $T$ is the bath temperature and ${T}_{rm s}$ is the systemic temperature defined at any time $t$ as the thermodynamic equilibrium temperature of the state point with density $rho(t)$ and potential energy $U(t)$. In equilibrium ${T}_{rm s}cong T$ with fluctuations that vanish in the thermodynamic limit. In contrast to Tools fictive temperature and other effective temperatures in glass science, the systemic temperature is defined for any configuration with a well-defined density, even if it is not in any sense close to equilibrium. Density and systemic temperature define an aging phase diagram in which the aging system traces out a curve. Predictions are discussed for aging following various density-temperature and pressure-temperature jumps from one equilibrium state to another, as well as for a few other scenarios. The proposed theory implies that R-simple glass-forming liquids are characterized by a dynamic Prigogine-Defay ratio of unity.
This paper generalizes isomorph theory to systems that are not in thermal equilibrium. The systems are assumed to be R-simple, i.e., have a potential energy that as a function of all particle coordinates $textbf{R}$ obeys the hidden-scale-invariance
Many experiments show that protein condensates formed by liquid-liquid phase separation exhibit aging rheological properties. Quantitatively, recent experiments by Jawerth et al. (Science 370, 1317, 2020) show that protein condensates behave as aging
Recent experiments and simulations have revealed glassy features in the cytoplasm, living tissues as well as dense assemblies of self propelled colloids. This leads to a fundamental question: how do these non-equilibrium (active) amorphous materials
The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an aging regime where physical changes occur intermittently and, on average, a
Colloidal dispersions of Laponite platelets are known to age slowly from viscous sols to colloidal glasses. We follow this aging process by monitoring the diffusion of probe particles embedded in the sample via dynamic light scattering. Our results s